Equivalence of some subcritical properties in continuum percolation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Equivalence of some subcritical properties in continuum percolation

Jean-Baptiste Gouéré

Résumé

We consider the Boolean model on $\R^d$. We prove some equivalences between subcritical percolation properties. Let us introduce some notations to state one of these equivalences. Let $C$ denote the connected component of the origin in the Boolean model. Let $|C|$ denotes its volume. Let $\ell$ denote the maximal length of a chain of random balls from the origin. Under optimal integrability conditions on the radii, we prove that $E(|C|)$ is finite if and only if there exists $A,B >0$ such that $\P(\ell \ge n) \le Ae^{-Bn}$ for all $n \ge 1$.
Fichier principal
Vignette du fichier
Perco-Booleen.pdf (162.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01721189 , version 1 (01-03-2018)

Identifiants

Citer

Jean-Baptiste Gouéré, Marie Théret. Equivalence of some subcritical properties in continuum percolation. 2018. ⟨hal-01721189⟩

Relations

283 Consultations
229 Téléchargements

Altmetric

Partager

More