Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains - Archive ouverte HAL
Article Dans Une Revue Journal of Magnetic Resonance Année : 2020

Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains

Résumé

The modeling of the diffusion MRI signal from moving and deforming organs such as the heart is challenging due to significant motion and deformation of the imaged medium during the signal acquisition. Recently, a mathematical formulation of the Bloch-Torrey equation, describing the complex transverse magnetization due to diffusion-encoding magnetic field gradients, was developed to account for the motion and deformation. In that work, the motivation was to cancel the effect of the motion and deformation in the MRI image and the space scale of interest spans multiple voxels. In the present work, we adapt the mathematical equation to study the diffusion MRI signal at the much smaller scale of biological cells.We start with the Bloch-Torrey equation defined on a cell that is moving and deforming and linearize the equation around the magnitude of the diffusion-encoding gradient. The result is a second order signal model in which the linear term gives the imaginary part of the diffusion MRI signal and the quadratic term gives the apparent diffusion coefficient (ADC) attributable to the biological cell. We numerically validate this model for a variety of motions and deformations.
Fichier principal
Vignette du fichier
S1090780720301270.pdf (4.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03153152 , version 1 (30-08-2022)

Licence

Identifiants

Citer

Imen Mekkaoui, Jerome Pousin, Jan Hesthaven, Jing-Rebecca Li. Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains. Journal of Magnetic Resonance, 2020, 318, pp.106809. ⟨10.1016/j.jmr.2020.106809⟩. ⟨hal-03153152⟩
93 Consultations
67 Téléchargements

Altmetric

Partager

More