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Abstract

The modeling of the diffusion MRI signal from moving and deforming organs such as the heart
is challenging due to significant motion and deformation of the imaged medium during the signal
acquisition. Recently, a mathematical formulation of the Bloch-Torrey equation, describing the
complex transverse magnetization due to diffusion-encoding magnetic field gradients, was developed
to account for the motion and deformation. In that work, the motivation was to cancel the effect of
the motion and deformation in the MRI image and the space scale of interest spans multiple voxels.
In the present work, we adapt the mathematical equation to study the diffusion MRI signal at the
much smaller scale of biological cells.

We start with the Bloch-Torrey equation defined on a cell that is moving and deforming and linearize
the equation around the magnitude of the diffusion-encoding gradient. The result is a second order
signal model in which the linear term gives the imaginary part of the diffusion MRI signal and the
quadratic term gives the apparent diffusion coefficient (ADC) attributable to the biological cell.
We numerically validate this model for a variety of motions and deformations.

Keywords: Diffusion MRI, Bloch-Torrey equation, deforming domain, ADC, finite elements.

1. Introduction

Diffusion MRI is an imaging modality that is capable of generating images with a contrast that
is sensitive to the diffusional motion of water molecules [1]. It plays a very important role in the
study of the microscopic structure of biological tissues by measuring the diffusion characteristics
of water molecules averaged at the scale of the imaging voxel. While this technique has been very5

successfully applied to static organs such as the brain [2, 3, 4], the interpretation of the diffusion
MRI signal from moving organs like the beating heart is made difficult by the tissue motion and
deformation during acquisition. In healthy hearts, the long axes of cardiac myocytes are orientated
in a helical arrangement through the ventricular wall and the cardiac cells are organized in laterally
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reinforced layers (sheetlets) of a few cells in thickness [5, 6]. Cardiac diffusion MRI can be used to10

show angular differences in hypertrophic cardiac myopathy which could be fundamental in assessing
heart disease [7, 8, 9]. The sensitivity of diffusion MRI to cardiac motion makes it difficult to assess
to what extent the diffusion measurements reflect the real properties of the cardiac tissues. This is
illustrated in some experimental studies introduced, for example, in [10, 11, 12, 13, 14, 15].

The signal measured in diffusion MRI is the total transverse magnetization in a voxel. This mag-15

netization can be modeled by the complex-valued Bloch-Torrey partial differential equation (PDE)
[16]. Originally, this equation was proposed to explain the signal attenuation due to diffusion at the
scale of the image, with an (apparent) diffusion coefficient assigned to each voxel. More recently, it
has been used to model the transverse magnetization at the microscopic scale, on the scale of the
individual cells. In this way, one can study the contribution to the signal that is attributable to20

various types of cells or to the extra-cellular space inside the imaging voxel. In static organs, such as
the brain, modeling and simulation efforts that link the measured diffusion MRI signal with the ge-
ometric structure of the cells and the extra-cellular space include analytical works (see, for example,
[17, 18]) and numerical works (see, for example [19, 20, 21, 22, 23, 24, 25]). For the heart, we cite
the works [26, 27, 28, 29, 30] in which ex-vivo diffusion MRI is presented by performing numerical25

simulations on a model of fiber phantom and virtual cardiac microstructure. This model includes
a simplified representation of individual cells, with physiologically correct cell size and orientation,
and the diffusion MRI is simulated using a Monte Carlo method and realistic MRI sequences. The
results are then compared with experimental measurements to validate the proposed model.

In contrast to the vast amount of past works for static organs, very few previous modeling and30

simulation works exist that include the influence of significant physiological motion of the imaged
organ during the diffusion MRI acquisition. In [31] the Bloch-Torrey equation is expressed in
generalized curvilinear coordinates to describe the behavior of the magnetization in the heart during
its deformation over the cardiac cycle and a change of basis formula was used in order to take into
account the effect of motion on diffusion. In another recent work [32], a mathematical formulation of35

the Bloch-Torrey PDE was developed to account for the motion and deformation. That formulation
was obtained by writing the Bloch-Torrey PDE in a domain that deforms over time according to
the laws of continuum mechanics and the interest was on cancelling the effect of the motion in the
MRI images. In the present work, we adapt the mathematical equations developed in [32] to study
the diffusion MRI signal arising from cells, i.e., the scale of interest will be much smaller than that40

of the imaging voxel.

In Section 2 we introduce the Bloch-Torrey equation in a moving and deforming biological cell at
the microscopic scale. Section 3 is dedicated to the derivation of a new second order model using
linearization technique on the solution of the Bloch-Torrey equation. In the new model, the linear
term gives the imaginary part of the diffusion MRI signal and the quadratic term gives the ADC45

attributable to the biological cell. In Section 4, we present some numerical simulations to validate
our model in the presence of an analytical deformation for different geometries of the biological cell.
We conclude with some remarks in Section 5.

2. Theory

Let Ω ⊂ Rdim be the interior of a biological cell (dim being the space dimension), and let Γ = ∂Ω50

be its boundary. In what follows, we will make the simplifying assumption that the cell membrane
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is impermeable. We first describe the Bloch-Torrey PDE in a static cell and then in a moving and
deforming cell.

2.1. Bloch-Torrey PDE in a biological cell

The complex-valued transverse water proton magnetization M in Ω can be described by the follow-55

ing Bloch-Torrey PDE[16]: ∂tM(x, t)− divx (σ∇xM(x, t)) + iγg · xf(t)M(x, t) = 0 in Ω× (0, T )
σ∇M · nx = 0 on Γ× (0, T )
M(x, 0) = ρ on Ω× {0}

(1)

where nx is the outward pointing normal to Ω, ρ is the initial magnetization. The coefficient σ is the
intrinsic diffusion coefficient and is assumed constant in Ω, γ = 2.67513×108 rad s−1Tesla−1 is the
gyro-magnetic ratio of the water proton, and the vector g = gug is the applied diffusion-encoding
magnetic field gradient (g containing its magnitude, ug is a unit direction vector in Rdim). The60

function f is a normalized time profile of the diffusion-encoding magnetic field gradient sequence.
The time profile of the standard Pulsed Gradient Spin Echo (PGSE) [17] sequence, simplified to
include only the parameters relevant to diffusion, is:

f(t) =

 1 if 0 < t ≤ δ,
−1 if ∆ < t ≤ ∆ + δ,
0 elsewhere.

(2)

The time at which the signal is measured is called the echo time TE ≥ ∆ + δ. The logarithm of
the diffusion MRI signal is usually plotted against the b-value:

b := γ2‖g‖2
∫ TE

0

F (t)2dt = γ2‖g‖2δ2(∆− δ

3
),

where

F (t) =

∫ t

0

f(s)ds.

The b-value is an important quantity in diffusion MRI. Typically, for different choices of ∆ and δ,
the value of ‖g‖ is adjusted so that the same set of b-values is used.65

While physically, the measurable diffusion MRI signal is due to the spins in all the biological
cells and the extra-cellular space in a voxel, it makes mathematically sense to define the part
of the diffusion MRI signal due to a particular biological cell in order to isolate and study its
diffusion characteristics. We define the diffusion MRI signal from the cell Ω as the integral of the
magnetization at TE over Ω:

S =

∫
Ω

M(x, TE)dx.

It then follows that the effective diffusion coefficient of the biological cell Ω can be defined as:

Deff
ug
≡ − 1

γ2
∫ TE

0
F (t)2dt

∂

∂g2
ln

(
S

S0

)∣∣∣∣∣
g=0

, (3)
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where S0 is the integral of the magnetization over Ω, measured for g = 0. The Deff
ug

defined in the
formula in Eq.(3) depends on the gradient direction ug and the temporal profile f(t), but not on
the gradient amplitude g.

In the MRI community, the effective diffusion coefficient is fitted using the measured diffusion MRI
signal at several b-values and the value is referred to as the ”apparent diffusion coefficient” (ADC).70

The ADC is widely used in medical applications, for instance, ADC maps of brain have been used
to identify tumors (see [33]).

2.2. Moving and deforming biological cell

We consider a moving and deforming biological cell Ω(t) ⊂ Rdim on the time interval t ∈ [0, T ]
with T > 0. Let us introduce the geometric transformation ϕ which is a differentiable, time-space75

dependent function:

ϕ : (0, T )× Ω(0) → Ω(t),

(t,x) 7→ ϕ(t,x) = X,

and assume that at each point x, the curve t 7→ ϕ(t,x) satisfies:

∂tϕ(t,x) = v(ϕ(t,x), t),

ϕ(0,x) = x,

where v is the velocity field v : Rdim → Rdim. In short, the moving and deforming domain
{Ω(t)}t∈[0,T ] evolves from the initial domain Ω(0) ⊂ Rdim according to the transformation ϕ.

The time variation of the magnetization M in Ω(t) can be written as a function of the diffusion80

flux through the boundary Γ(t):

d

dt

∫
Ω(t)

M(X, t)dX =

∫
Γ(t)

σ∇XM(X, t) · nXdSX .

By using the Reynolds transport theorem [34] and taking into account the frequency term (iγg ·
xf(t)M(x, t)) in the Bloch-Torrey PDE in a static domain, we recover the Bloch-Torrey PDE in
the moving domain as:

∂tM(X, t)− divX(σ∇XM(X, t)) + divX(M(X, t)v(X, t)) + iγg ·Xf(t)M(X, t) = 0
in Ω(t)× (0, T )
σ∇M · nX = 0 on Γ(t)× (0, T )
M(X, 0) = ρ(X) on Ω(t)× {0}.

(4)

To transform the magnetization M , defined on the deforming domain to a related quantity M on85

the initial domain, we use the definition:

M : Ω(0)× (0, T ) → R
M(x, t) 7→ M(ϕ(t,x), t).

From [32], under the assumption of the incompressibility of the medium:

divX(v) = 0, det(Jϕ) = 1,
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the Bloch-Torrey PDE for M on Ω(0) can be written as:
∂tM(x, t)− div(Jϕ

−1σJϕ
−T∇M(x, t)) + iγg ·ϕ(t,x)f(t)M(x, t) = 0 in Ω(0)× (0, T ),

Jϕ
−1σJϕ

−T∇M · nx = 0 on Γ(0)× (0, T ),
M(x, 0) = ρ(x) on Ω(0)× {0},

 (5)

where Jϕ = ∇xϕ is the Jacobian matrix of the deformation field ϕ. We use the notation:

Jϕ
−T ≡ (Jϕ

−1)T .

The vector nx is the outward pointing normal to Ω(0).

In this paper we consider Eq. (5) as the reference model and we refer to it as BTPDE-D (for
Bloch-Torrey PDE in a deforming domain), from which we will derive, in the next section, the
ADC of a moving and deforming cell. The diffusion MRI signal, obtained by solving Eq. (5), will
be called the reference signal:

Sref =

∫
Ω

M(x, TE)dx. (6)

For the details on the derivation of BTPDE-D, the reader is referred to [32].

3. ADC of BTPDE-D using linearization90

In this section we derive the ADC of BTPDE-D using linearization around g, the magnitude of the
diffusion-encoding gradient in (5).

Let us decompose the deformation field as:

ϕ(t,x) := x + d(t,x),

where d is a displacement field, and we define the Jacobian matrix of ϕ by:

Jϕ := I + Jd,

with Jd = ∇xd being the Jacobian matrix of d.

We transform the magnetization M (5) by defining a new unknown M̃ :

M(x, t) = M̃(x, t) exp
(
− iγg · x

∫ t

0

f(s)ds
)
.

It is easy to show that M̃ satisfies the following problem:
∂tM̃(x, t)− div

(
K
(
∇M̃(x, t)− iγgF (t)M̃(x, t)

)
+ iF (t)Kγg · ∇M̃(x, t),

+
[
Kγg · γgF 2(t) + iγg · d(t,x)f(t)

]
M̃(x, t) = 0 in Ω× (0, T ),

K[∇M̃ − iγgF (t)M̃ ] · nx = 0 on Γ× (0, T ),

M̃(x, 0) = ρ on Ω× {0}.

(7)

where
K = Jϕ

−1σJϕ
−T .
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Under the assumption that the initial magnetization ρ is constant, we introduce a non-dimensional95

parameter ε > 0 in g, so that g = εg̃. Then (7) becomes:
∂tM̃ε(x, t)− div

(
K
(
∇M̃ε(x, t)− iεγg̃F (t)M̃ε(x, t)

)
+ iεF (t)Kγg̃ · ∇M̃ε(x, t),

+
[
ε2Kγg̃ · γg̃F 2(t) + iεγg̃ · d(t,x)f(t)

]
M̃ε(x, t) = 0 in Ω× (0, T ),

K[∇M̃ε − iεγg̃F (t)M̃ε] · nx = 0 on Γ× (0, T ),

M̃ε(x, 0) = ρ on Ω× {0},

(8)

Assuming ε is small, we write M̃ε(x, t) as an expansion in powers of ε:

M̃ε(x, t) =

∞∑
j=0

εjM̃j(x, t).

Inserting the above expansion in (8), we recover the following equations for the first three terms.

– For M̃0 : 
∂tM̃0(x, t)− div(K∇M̃0(x, t)) = 0 in Ω× (0, T )

K∇M̃0 · nx = 0 on Γ× (0, T )

M̃0(x, 0) = ρ on Ω× {0}.
(9)

– For M̃1 : 
∂tM̃1(x, t)− div(K∇M̃1(x, t)) + idiv(Kγg̃F (t)M̃0(x, t))

+iF (t)Kγg̃ · ∇M̃0(x, t) + iγg̃ · d(t,x)f(t)M̃0 = 0 in Ω× (0, T )

K[∇M̃1 − iγg̃F (t)M̃0] · nx = 0 on Γ× (0, T )

M̃1(x, 0) = 0 on Ω× {0}.

(10)

– For M̃2 :100 
∂tM̃2(x, t)− div

(
K
(
∇M̃2(x, t)− iγg̃F (t)M̃1(x, t)

)
+ iF (t)Kγg̃ · ∇M̃1(x, t) + Kγg̃ · γg̃F 2(t)ρ

+iγg̃ · d(t,x)f(t)M̃1 = 0 in Ω× (0, T )

K[∇M̃2 − iγg̃F (t)M̃1] · nx = 0 on Γ× (0, T )

M̃2(x, 0) = 0 on Ω× {0}.

(11)

From (9) we deduce that

M̃0 ≡ ρ. (12)

Consequently (10) is:
∂tM̃1(x, t)− div(K∇M̃1(x, t)) + idiv(Kγg̃F (t)ρ) + iγg̃ · d(t,x)f(t)ρ = 0 in Ω× (0, T )

K[∇M̃1 − iγg̃F (t)ρ] · nx = 0 on Γ× (0, T )

M̃1(x, 0) = 0 on Ω× {0}.
(13)
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From (13) we observe that M̃1 is purely imaginary, and it can be written as:

M̃1 = iργ‖g̃‖ω(x, t), (14)

where ω(x, t) is the solution of: ∂tω(x, t)− div(K∇ω(x, t)− F (t)Kug) + ug · d(t,x)f(t) = 0 in Ω× (0, T )
K[∇ω − F (t)ug] · nx = 0 on Γ× (0, T )
ω(x, 0) = 0 on Ω× {0}.

(15)

Equivalently, by defining ω̃(x, t) = ω(x, t)− F (t)ug · x, we get for ω̃: ∂tω̃(x, t)− div(K∇ω̃(x, t)) + ug · (x + d(t,x))f(t) = 0 in Ω× (0, T )
K[∇ω̃] · nx = 0 on Γ× (0, T )
ω̃(x, 0) = 0 on Ω× {0}.

(16)

and
M̃1 = iργ‖g̃‖ (ω̃(x, t) + F (t)ug · x) . (17)

After integration in time and space of (11) we recover:∫
Ω

M̃2 + i

∫ t

0

F (s)

∫
Ω

Kγg̃ · ∇M̃1(x, s) + ρ

∫ t

0

F 2(s)

∫
Ω

Kγg̃ · γg̃ + i

∫ t

0

f(s)

∫
Ω

γg̃ · d(s,x)M̃1 = 0.

(18)

By using the expression of the imaginary part of M1 (17), (18) becomes:105 ∫
Ω

M̃2 = ρ

∫ t

0

F (s)

∫
Ω

Kγg̃ · ∇ω(x, s)‖γg̃‖ − ρ
∫ t

0

F 2(s)

∫
Ω

Kγg̃ · γg̃

+ ρ

∫ t

0

f(s)

∫
Ω

γg̃ · d(s,x)ω(x, s)‖γg̃‖. (19)

The transverse magnetization of the biological cell Ω to a second order approximation in ε is:

M̃ε ≈ M̃0 + εM̃1 + ε2M̃2, (20)

and the diffusion MRI signal is:

Snew =

∫
Ω

(ρ+ εM̃1(x, TE) + ε2M̃2(x, TE))dx.

Inserting the expression into the original variable g gives the approximation to the signal:

Snew
ρ|Ω|

= 1 + i‖γg‖Simagnew −ADCnew‖γg‖2
∫ TE

0

F (t)2dt, (21)

where the imaginary part of the signal accounts for the linear term in γg:

Simagnew =
1

|Ω|

∫
Ω

ω(x, TE)dx = − 1

|Ω|

∫ TE

0

∫
Ω

ug · d(t,x)dxf(t)dt, (22)
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and the apparent diffusion coefficient (ADC) accounts for the quadratic term in γg:

ADCnew =
1

|Ω|
∫ TE

0
F (t)2dt

(A1 +A2 +A3) , (23)

where the three terms that contribute to the ADC are:

A1 =

∫ TE

0

(
F (t)2

∫
Ω

K(t,x)ug · ug

)
dt, (24)

A2 = −
∫ TE

0

(
F (t)

∫
Ω

(K(t,x)ug · ∇ω(x, t))

)
dt, (25)

A3 = −
∫ TE

0

(
f(t)

∫
Ω

ug · d(t,x)ω(x, t)

)
dt. (26)

Using the divergence theorem for A2 and the definition of ω̃, we get:

A1 +A2 =−
∫ TE

0

(
F (t)

∫
∂Ω

ω̃(x, t)K(t,x)ug · nxdsx

)
dt

+

∫ TE

0

(
F (t)

∫
Ω

ω̃(x, t)div(K(t,x)ug)dx

)
dt.

Thus, we can split ADCnew into four terms as follows:

ADCnew =
1

|Ω|
∫ TE

0
F (t)2dt

(Aa +Ab +Ac +Ad) , (27)

where

Aa = −
∫ TE

0

(
F (t)

∫
∂Ω

ω̃(x, t)K(t,x)ug · nxdsx

)
dt (28)

Ab = −
∫ TE

0

(
f(t)

∫
Ω

ug · d(t,x)ω̃(x, t)dx

)
dt (29)

Ac = −
∫ TE

0

(
f(t)F (t)

∫
Ω

(ug · d(t,x))(ug · x)dx

)
dt (30)

Ad =

∫ TE

0

(
F (t)

∫
Ω

ω̃(x, t)div(K(t,x)ug)dx

)
dt. (31)

4. Numerical results

In this section we validate the second order model (21) by comparing it against the reference signal
in (6) from the BTPDE-D model.
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4.1. Deformation field110

We design a homogeneous deformation field ϕ for heart cells (myocytes) given by:

ϕ(x, t) = P (t)x ; P (t) =

 P11(t) 0 0
0 P22(t) 0
0 0 P33(t)

 (32)

with

P11(t) = P22(t) = 1− V (t), (33)

P33(t) = 1 +Wk(t), (34)

and

k(t) =

{
0.5(1− cos (πt/Ts)) if t ≤ Ts
0.5(1− cos (π(t− T )/Td)) else.

The parameter W ≥ 0 controls the amplitude of the deformation, T = 1000ms is the duration of
one cardiac cycle, where Ts = T/3 is the duration of the contraction of the heart (systolic phase)
and Td = 2T/3 is the duration of dilation (diastolic phase). The function V (t) is taken in the form:

V (t) = 1−
√

1/P33(t). (35)

to ensure that
det(P (t)) = 1,∀t > 0.

The displacement field is thus:

d(t,x) = Q(t)x, Q(t) =

 P11(t)− 1 0 0
0 P22(t)− 1 0
0 0 P33(t)− 1

 ,

and the Jacobian matrices, which are independent of x, are :

Jϕ(t) = P (t), Jd(t) = Q(t).

For this example, the diffusion tensor in the Bloch-Torrey PDE is given by:

K(t) = σ(P−1(t))2.

The imaginary part of the signal is

Simagnew = −ug
T

(∫ TE

0

Q(t)f(t)dt

)(
1

|Ω|

∫
Ω

xdx

)
, (36)

where 1
|Ω|
∫

Ω
xdx is the center of mass of the domain. The first term in the ADC is

Aa = −ug
T

∫ TE

0

F (t)σ (Id+Q(t))
−2

(∫
∂Ω

ω̃(x, t)nxdsx

)
dt, (37)

9



where
∫
∂Ω
ω̃(x, t)nxdsx describes the flux of ω̃(x, t) around the boundary. The second term of the

ADC is

Ab = −ug
T

∫ TE

0

f(t)Q(t)

(∫
Ω

xω̃(x, t)dx

)
dt, (38)

where
∫

Ω
xω̃(x, t)dx are the moments of ω̃(x, t) around the principle axes. Finally,

Ac = −ug
T

(∫ TE

0

f(t)F (t)Q(t)dt

)(∫
Ω

xxT dx

)
ug, (39)

where
∫

Ω
xxT dx are the second order moments of the domain. The last term is independent of the

space variable, i.e.:
Ad = 0.

To study the effects of the geometry we consider a straight cylinder as the canonical geometry of
the heart cell as well as two other geometries where the cylinder is twisted and bent, see Figure 1.

Figure 1: The finite element-meshes of three cylinders that model a myocyte. The finite-element mesh of
the straight cylinder has 13518 nodes and 54921 elements. The finite-element mesh of the twisted cylinder
has 13515 nodes and 54883 elements, the bend cylinder has 13530 nodes and 55004 elements.

The values of W in the numerical simulations range between 0 and 2. The rate of the deformation
is the same in the x and y directions. It is a contraction in the first third of [0, T ] (systolic phase)
and an extension in the remaining two-thirds (diastolic phase). In the z-direction, the first third of115

[0, T ] is an extension and the remaining two-thirds is a contraction. There is no net motion between
the starting and ending points of the diffusion MRI experiment over the interval [0, T ]. The effect
of the deformation is presented in Figures 2(a), 2(b) and 2(c) for the straight, bent and twisted
cylinders at different times in the cardiac cycle.
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(a) (b)

(c)

Figure 2: Cylinders at different moments in cardiac deformation. From left to right: t=0ms, t=140ms
(mid-systole). t=300ms (end-systole), t=640ms (mid-diastole). Deformation amplitude W=1. Geometry:
(a) straight cylinder. (b) bent cylinder. (c) twisted cylinder.

We will also simulate a space-dependent deformation field, given by the following equations:

P33(t, z) = 1 +Wz2k(t), (40)

V (t) = 1−
√

1/P33(t, z) ≈ 1

2
Wz2k(t), (41)

120

P11(t, z) = P22(t, z) = 1− V (t, z),

≈ 1− 1

2
Wz2k(t). (42)

The deformation ϕ defined as:
ϕ(t,x) = P (t, z)x

with

P (t, z) =

 P11(t, z) 0 0
0 P22(t, z) 0
0 0 P33(t, z)


11



will be written as:

ϕ(x, t) =

 (1− 1
2Wz2k(t))x

(1− 1
2Wz2k(t))y

(1 +Wz2k(t))z

 . (43)

4.2. Simulations for one cylindrical cell

In this section we numerically compare the reference signal Sref in Eq. (6) and the newly derived
signal Snew in Eq. (21). We solve (5) to obtain the reference signal and we solve (16) to obtain
the new signal. The numerical implementation was done in Matlab using P1 finite elements for the
space discretization coupled to the ODE solver ”ode23t” for the time integration. The equations125

were solved on a cylinder of radius 10µm and height 100µm.

We chose the PGSE sequence [17] with pulse duration δ = 5ms and two values of the diffusion time:
∆ = 10ms and ∆ = 40ms. The intrinsic diffusion coefficient is chosen as σ = 2× 10−3mm2/s, and
the initial condition ρ ≡ 1Tesla.

130

For the simulations presented in Figures 3, 4 and 5, 6, 7, we used the homogeneous deformation
field (Eqs. (32)–(35)).

In Figure 3 we show the real part of the diffusion MRI signal for Sref (6) and Snew (21) for two
diffusion-encoding directions : ug = (1, 0, 0) and ug = (0, 0, 1), with δ = 5ms and ∆ = 40ms.
We compute the signal during a diffusion sequence at two different points of the cardiac cycle:135

[t, t+ TE], t = 140ms (mid-systole) and t = 640ms (mid-diastole). For diffusion in the x-direction,
we observe that the new second order approximation signal is close to the reference signal for all
deformation parameter W , for b-values up to 500 s/mm

2
, at both time points of the cardiac cycle.

However, in the diffusion direction z, ug = (0, 0, 1), the new second order approximation signal
is less close to the reference signal for large values of W , and the inaccuracy is more significant140

at higher b-values (higher g). This is a consequence of our design of the deformation to be more
significant in the z-direction than in the x and y directions.
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Figure 3: Real part of the reference signal and the new second order approximation signal as a function
of b-value for different values of W, the deformation parameter (W = 0 means the cell is static during
the diffusion MRI sequence). Sequence parameters: δ = 5ms and ∆ = 40ms. Top left: t=140ms (mid-
systole), ug = (1, 0, 0). Top right: t=140ms (mid-systole), ug = (0, 0, 1). Bottom left: t=640ms (mid-
diastole), ug = (1, 0, 0). Bottom right: t=640ms (mid-diastole), ug = (0, 0, 1). Geometry: straight cylinder.
Deformation field: Homogeneous (Eqs.(32)–(35)).

In Figure 4 we show the imaginary part of the new second order approximation signal, Simagnew , for
diffusion encoding in the x-direction, ug = (1, 0, 0), at t=140ms (mid-systole) in the cardiac cycle.
Due to the presence of cardiac deformation (W 6= 0), the imaginary part of the signal is non-zero,145

unlike the case without deformation (W = 0).
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Figure 4: Imaginary part of the reference signal and the new second order approximation signal as a
function of b-value for different values of the deformation parameter W (W = 0 means the cell is static
during the diffusion MRI sequence), t t = 140ms (mid-systole) of the cardiac cycle. Sequence parameters:
δ = 5ms and ∆ = 40ms. Geometry: straight cylinder. Deformation field: Homogeneous (Eqs.(32)–(35)).

Next, we compare the reference ADCref (3) and the newly derived ADCnew (27), both normalized
by dividing by the intrinsic diffusion coefficient σ. In Figure 5, we show the normalized ADCs in
two diffusion-encoding directions: ug = (1, 0, 0) and ug = (0, 0, 1), at several different time points
in the cardiac cycle: t = {140, 300, 640}ms, for two diffusion-encoding sequences: PGSE (δ = 5ms,150

∆ = 10ms) and PGSE (δ = 5ms, ∆ = 40ms). It can be seen that the ADC of the new second order
approximation signal model is very accurate for describing the ADC of the reference model.
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Figure 5: The normalized ADC of the reference signal and the ADC of the new second order approximation
signal as function of the deformation parameter W (W = 0 means the cell is static during the diffusion
MRI sequence), at different time points in the cardiac cycle: t=140, 300, 640ms. Top left, PGSE (δ = 5ms,
∆ = 10ms), ug = (1, 0, 0). Top right, PGSE (δ = 5ms, ∆ = 10ms), ug = (0, 0, 1). Bottom left, PGSE
(δ = 5ms, ∆ = 40ms), ug = (1, 0, 0). Bottom right, PGSE (δ = 5ms, ∆ = 40ms), ug = (0, 0, 1). Geometry:
straight cylinder. Deformation field: Homogeneous (Eqs.(32)–(35)).

In Figure 6, we show the normalized ADC of the new second order approximation signal model
(27), computed in 800 directions, uniformly distributed in the unit sphere, for the sequence PGSE
(δ = 5ms, ∆ = 40ms). The results are presented for the deformation amplitude W=0 (without155

deformation effect) and W = 1, W = 2. The ADC is computed for different time points in
the cardiac cycle: t = {140, 300, 640}ms. As in Figure 5 we see that the ADC without cardiac
deformation (W = 0) coincides with the one at the end of the systolic phase (t = 300ms) because in
that moment the time variation of the heart deformation is negligible. This confirms the simulation
results obtained in [35] and the experimental results in [10]. To show the effect of the deformation160

amplitude W , we compare the ADC at t=140ms and t=640ms of the cardiac cycle for W = 1 and
W = 2. We see clearly that the larger W induces a larger ADC in the z direction. This effect is
minimal in the x and y diffusion-encoding directions.
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Figure 6: Normalized ADC of the new second order approximation signal model (27), computed in 800
directions, uniformly distributed in the unit sphere, for the sequence PGSE (δ = 5ms, ∆ = 40ms), W is
the deformation parameter, t indicates the point in the cardiac cycle. Top left: W=0 (no deformation).
Top right: W=1, t=300ms. Middle left: W=1, t=140ms. Middle right: W=2, t=140ms. Bottom left:
W=1, t=640ms. Bottom right: W=2, t=640ms. The black points are the magnitude of the normalized
ADC multiplied by the diffusion-encoding direction. The color indicates the value of the normalized ADC.
Geometry: straight cylinder. Deformation field: Homogeneous (Eqs.(32)–(35)).
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In Figure 7 we show the effect of the shape of the cylindrical cell on the ADC. We compute
the normalized ADC of the new second order approximation signal model (27), in 800 directions,165

uniformly distributed on the unit sphere, for the sequence PGSE (δ = 5ms, ∆ = 40ms) for the bent
cylinder (Figure 2(b)) and the twisted cylinder (Figure 2(c)). Again, we observe that the ADC
without cardiac deformation (W = 0) coincides with the one at the end systolic phase (t = 300ms)
when the variation of the heart deformation during the application of the diffusion encoding sequence
is negligible.170
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Figure 7: Normalized ADC of the new second order approximation signal model (27), computed in 800
directions, uniformly distributed in the unit sphere, for the sequence PGSE (δ = 5ms, ∆ = 40ms). The
black points are the magnitude of the normalized ADC multiplied by the diffusion-encoding direction. The
color indicates the value of the normalized ADC. W is the deformation parameter, t indicates the point
in the cardiac cycle. Top left: twisted cylinder, W = 0 (no deformation effect). Top right: bend cylinder,
W = 0 (no deformation effect). Middle left: twisted cylinder, W = 1 and t = 140ms . Middle right: bend
cylinder, W = 1 and t = 140ms. Bottom left: twisted cylinder, W = 1 and t = 300ms . Bottom right: bend
cylinder, W = 1 and t = 300ms. Deformation field: Homogeneous (Eqs.(32)–(35)).
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We see that the ADC for the twisted cylinder and the straight cylinder are similar, whereas the ADC
of the bent cylinder is significantly different. To explain this phenomenon, we show the differences
in the directional surface to volume ratios of these 3 geometries. The directional surface to volume
ratio comes up in the well-known formula for the ADC in the short diffusion time regime. The
short time approximation (STA) [36, 37] formula is the following (with correction for non-narrow
pulses [38]):

STA = σ

[
1− 4

√
σ

3
√
π
Cδ,∆

Aug

V

]
, (44)

with σ being the intrinsic diffusivity coefficient, and

Aug =

∫
∂Ω

(ug · n)
2
ds

is the gradient direction dependent surface area, the pulse separation and pulse duration are ac-
counted for by:

Cδ,∆ =
4

35

(∆ + δ)
7/2

+ (∆− δ)7/2 − 2
(
δ7/2 + ∆7/2

)
δ2 (∆− δ/3)

=
√

∆

(
1 +

1

3

δ

∆
− 8

35

(
δ

∆

)3/2

+ · · ·

)
.

When δ � ∆, the value Cδ,∆ is approximately
√

∆.

In Figure 8, we show the ADC obtained by evaluating the above STA formula. It is clear that the
STA formula closely tracks the shapes of the ADC shown in Figures 6 and 7. There is a minor
difference in the case of the bend cylinder when W = 0 (the sphere being flat along the z-axis
rather than the y-axis), but clearly, the directional surface area of the bend cylinder is significantly175

different than those of the straight and twist cylinders.
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Figure 8: Normalized ADC in the short time approximation regime (STA), computed in 100 directions,
uniformly distributed in the unit sphere, for the sequence PGSE (δ = 5ms, ∆ = 40ms). The black points are
the magnitude of the normalized ADC multiplied by the diffusion-encoding direction. The color indicates
the value of the normalized ADC. W is the deformation parameter, t indicates the point in the cardiac cycle.
Top left: straight cylinder, W = 0 (no deformation effect). Top right: straight cylinder, W = 1, t=140ms.
Middle left: bend cylinder, W = 0. Middle right: bend cylinder, W = 1, t = 140ms. Bottom left: twisted
cylinder, W = 0. Bottom right: twisted cylinder, W = 1, t = 140ms. Deformation field: Homogeneous
(Eqs.(32)–(35)).
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Now we show simulation results of the non-homogeneous deformation field (Eqs. (40)–(43)). In
Figure 9, we can see that, similar to the homogeneous deformation field we showed previously,
the higher signal curves in the x-direction are due to a more deformed field (higher W ), and in
the z-direction, they are due to a less deformed field (lower W ). Also similar to the homogeneous180

deformation field, the ADC in Figure 10 at time t=300ms for non-zero values of W is approximately
the same as for W = 0. However, some differences can be seen between the two deformation fields.
For example, in the z-direction, the differences at larger W between the ADC at t=140ms and the
ADC at t=640ms are smaller for the non-homogeneous deformation field than for the homogeneous
one. This difference can be seen also in Figure 11, where we show the magnetization solution at TE185

for the straight cylinder undergoing the two deformations. For the homogeneous deformation field,
the difference in the magnetization solution between t=140ms and t = 640ms are more significant
than for the case of the non-homogeneous deformation field.
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Figure 9: Real part of the reference signal and the new second order approximation signal as a function
of b-value for different values of W, the deformation parameter (W = 0 means the cell is static during
the diffusion MRI sequence). Sequence parameters: δ = 5ms and ∆ = 40ms. Top left: t=140ms (mid-
systole), ug = (1, 0, 0). Top right: t=140ms (mid-systole), ug = (0, 0, 1). Bottom left: t=640ms (mid-
diastole), ug = (1, 0, 0). Bottom right: t=640ms (mid-diastole), ug = (0, 0, 1). Geometry: straight cylinder.
Deformation field: Non-homogeneous (Eqs. (40)–(43)).
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Figure 10: The normalized ADC of the reference signal and the ADC of the new second order approximation
signal as function of the deformation parameter W (W = 0 means the cell is static during the diffusion
MRI sequence), at different time points in the cardiac cycle: t=140, 300, 640ms. Left, PGSE (δ = 5ms,
∆ = 40ms), ug = (1, 0, 0). Right, PGSE (δ = 5ms, ∆ = 40ms), ug = (0, 0, 1). Geometry: straight cylinder.
Deformation field: Non-homogeneous (Eqs. (40)–(43)).

(a) (b)

Figure 11: Magnetization solution of Eq. (5) at echo time (TE) for δ = 5ms, ∆ = 40ms, ug = (0, 0, 1)
and b-value=50s/mm2. Moments of the cardiac cycle: From left to right: t=0ms, t=140ms (mid-systole).
t=300ms (end-systole), t=640ms (mid-diastole). Geometry: straight cylinder. (a) Non-homogeneous de-
formation field (Eqs. (40)–(43)). Deformation amplitude W=2×10−3. (b) Homogeneous deformation field
(Eqs.(32)–(35)). Deformation amplitude W=2.

4.3. Computational time

In Table 1 we show the computational times for the simulation of the reference model (BTPDE-D)190

and the new second order approximation model for the straight cylinder. All the simulations were
performed on a server computer with 12 processors (Intel (R) Xeon (R) E5-2667 @2.90 GHz), 192
GB of RAM, running CentOS 7, using MATLAB R2019a. It can be seen that the new second order
model takes about 70% of the computational time of the reference model. In Table 2 we show the
computational times to simulate the new second order model for the twisted and bend cylinders.195

The computational times do not depend on the value of the deformation parameter W and on the
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point of the cardiac cycle simulated. These computational times are provided to illustrate typical
simulation times. Though the advantages of the new second order model include shorter simulation
times, more significant advantages lie in the fact that it is more amenable to mathematical analysis.

Reference model (BTPDE-D) New 2nd order model
δ = 5ms,∆ = 10ms 71.62 sec 47.99 sec
δ = 5ms,∆ = 40ms 72.53 sec 51.04 sec

Table 1: The average computational times to obtain the ADC, per diffusion-encoding direction. Geometry:
straight cylinder (13518 nodes and 54921 elements).

Finite-element mesh size New 2nd order model
Twisted cylinder

Nodes: 13515, Elements: 54883 57.5 sec
Bend cylinder

Nodes: 13530, Elements: 55004 55.1 sec

Table 2: The computational times to obtain the new 2nd order model, per diffusion-encoding direction. The
sequence is PGSE (δ = 5ms, ∆ = 40ms).

5. Concluding remarks200

We derived a second order (in the diffusion-encoding gradient magnitude g) signal perturbation
model whose linear term gives the imaginary part of the diffusion MRI signal and whose quadratic
term gives the ADC attributable to the biological cell. We numerically validated this model for a
constructed example of cardiac motion and deformation using a finite element discretization of the
equations in a cylindrical cell.205

This work is a first step to understand the origins of the imaginary part of the diffusion MRI signal
in the case of moving and deforming domains and the deviation of the ADC from that which is
measured in the case of a static domain. By formulating the second order model, we are able to
write the different contributing factors to the linear and the quadratic terms in (21). In particular,
we related the imaginary part of the signal to the center of mass of the domain (22) and the ADC210

to four contributing terms (27). We gave a physical interpretation to these contributing factors in
terms of the flux and the moments of the function ω̃(x, t). The next step is to understand ω̃(x, t),
which is a solution of a diffusive PDE subject to zero initial conditions and homogeneous Neumann
boundary conditions.

In addition to providing an analytic understanding of the diffusion MRI of moving and deform-215

ing domains, our work also included the implementation of a numerical method to simulate the
BTPDE-D model and the new second order approximation signal model.
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We present a second order (in the diffusion-encoding gradient magnitude) signal

perturbation model for diffusion MRI in moving and deforming domains

• The linear term gives the imaginary part of the diffusion MRI signal;

• The quadratic term gives the apparent diffusion coefficient ;

• The scale of interest is that of a biological cell;

• The model is relevant to cardiac diffusion MRI;

Apparent diffusion coefficient measured by diffusion MRI 

of moving and deforming domains
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