Semiparametric inference for mixtures of circular data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Semiparametric inference for mixtures of circular data

Résumé

We consider X 1 ,. .. , X n a sample of data on the circle S 1 , whose distribution is a twocomponent mixture. Denoting R and Q two rotations on S 1 , the density of the X i 's is assumed to be g(x) = pf (R −1 x) + (1 − p)f (Q −1 x), where p ∈ (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part θ = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of θ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.
Fichier principal
Vignette du fichier
MixtureCercle (1).pdf (644.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03149434 , version 1 (12-03-2021)
hal-03149434 , version 2 (25-05-2022)

Identifiants

Citer

Claire Lacour, Thanh Mai Pham Ngoc. Semiparametric inference for mixtures of circular data. 2021. ⟨hal-03149434v1⟩
130 Consultations
82 Téléchargements

Altmetric

Partager

More