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Semiparametric inference for mixtures of circular data

Claire Lacour, Thanh Mai Pham Ngoc

March 12, 2021

Abstract

We consider X1, . . . , Xn a sample of data on the circle S1, whose distribution is a two-
component mixture. Denoting R and Q two rotations on S1, the density of the Xi’s is assumed
to be g(x) = pf(R−1x) + (1− p)f(Q−1x), where p ∈ (0, 1) and f is an unknown density on the
circle. In this paper we estimate both the parametric part θ = (p,R,Q) and the nonparametric
part f . The specific problems of identifiability on the circle are studied. A consistent estimator of
θ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of
f with a penalized criterion to choose the resolution level. We show that our adaptive estimator
is optimal from the oracle and minimax points of view when the density belongs to a Sobolev
ball. Our method is illustrated by numerical simulations.

Keywords: Mixture model ; Semiparametric estimation ; Circular data

1 Introduction

Circular data are collected when the topic of interest is a direction or a time of day. These particular
data appear in many applications: earth sciences (e.g. wind directions), medicine (e.g. circadian
rhythm), ecology (e.g. animal movements), forensics (crime incidence). Different surveys on sta-
tistical methods for circular data can be found: Mardia and Jupp (2000), Jammalamadaka and
SenGupta (2001), Ley and Verdebout (2017) or more recently Pewsey and García-Portugués (2020).
In the present work, we consider a mixture model with two components equal up to a rotation. We
observe X1, . . . , Xn a sample of data on S1 with probability distribution function:

g(x) = p0f(R−1
0 x) + (1− p0)f(Q−1

0 x) = p0f(x− α0) + (1− p0)f(x− β0). (1.1)

In the right hand side we have identified f : S1 → R and its periodized version on R. Here R0 and
Q0 are two unknown rotations of the circle. R0 is a rotation with angle α0 and Q0 is a rotation with
angle β0. The aim is to estimate both θ0 = (p0, α0, β0) and the nonparametric part f . Note that we
can rewrite model (1.1) as

Xi = Yi + εi (mod 2π), i = 1, . . . , n (1.2)

where Yi has density f and εi is a Bernoulli angle, which is equal to α0 with probability p0 and β0

otherwise. Accordingly, model (1.1) can be viewed as a circular convolution model with unknown
noise operator ε. The circular convolution model has been studied by Goldenshluger (2002) in
the case of known noise operator whereas Johannes and Schwarz (2013) dealt with unknown error
distribution but have at their disposal an independent sample of the noise to estimate this latter. It
is worth pointing out that Goldenshluger (2002) and Johannes and Schwarz (2013) made the usual
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assumptions on the decay of the Fourier coefficients of the density of ε, whereas in model (1.1) the
Fourier coefficients are not decreasing.

Mixture models for describing multimodal circular data date back to Pearson (1894) and have
been largely used since then. An important case in the literature is the mixture of two von Mises
distributions which has been explored in numerous works. Let us cite among others papers by Bartels
(1984), Spurr (1981) or Chen et al. (2008). From a practical point of view, algorithms have also
been proposed to deal with it, including maximum likelihood algorithms by Jones and James (1969)
or a characteristic function based procedure by Spurr and Koutbeiy (1991). Note that on the unit
hypersphere, Banerjee et al. (2005) investigated clustering methods for mixtures of von Mises Fisher
distributions. In our framework, we shall not assume any parametric form of the density and hence
the model is said to be semiparametric. To the best of our knowledge, this is the first work devoted to
the study of the semiparametric mixture model for circular data. This semiparametric model is more
complex and intricate than the usual parametric one encountered in the circular literature. In the
spherical case, Kim and Koo (2000) studied the general mixture framework for a location parameter
but assuming that the nonparametric part f is known. On the real line, this semiparametric model
has been studied by Bordes et al. (2006), Hunter et al. (2007), Butucea and Vandekerkhove (2014)
or Gassiat and Rousseau (2016) for dependent latent variables. For the multivariate case, see for
instance Hall and Zhou (2003), Hall et al. (2005), Gassiat et al. (2018), Hohmann and Holzmann
(2013). When dealing with the specific case of one of the two components being parametric, one
refers to work by Ma and Yao (2015) and references therein.

Identifiability questions are at the heart of the theory of mixture models and the circular context
is no exception. Thus, our first task is to study the identifiability of the model. From a mathematical
point of view, the topology of the circle makes the problem very different from the linear case. In
the circular parametric case, Fraser et al. (1981) obtained identifiability results for the von Mises
distributions, then extended in Kent (1983) to generalized von Mises distributions while Holzmann
et al. (2004)) focused on wrapped distributions, basing their analysis on the Fourier coefficients.
Here, the Fourier coefficients turn out to be very useful as well but the nonparametric paradigm
makes the study quite different and intricate. Our identifiability results are obtained under mild
assumptions on the Fourier coefficients. We require that the coefficients are real which can be related
to the usual symmetry assumption in mixture models (see for instance Hunter et al. (2007)) and
we impose that only the first 4 coefficients do not vanish. Interestingly enough, some not intuitive
phenomena appear. A striking case occurs when the angles α0 and β0 are distant from 2π/3, the
model is then nonidentifiable which is quite surprising at first sight.

Once the identifiability of the model obtained, we resort to a contrast function in the line of
Butucea and Vandekerkhove (2014) to estimate the Euclidian parameter θ0. In that regard, we prove
the consistency of our estimator and an asymptotic normality result. Thereafter, for the estimation
of the nonparametric part, a penalized empirical risk estimation method is used. The estimator of
the density turns to be adaptive (meaning that it does not require the specification of the unknown
smoothness parameter), a property which was not reached so far for this semiparametric model even
in the linear case. The procedure devised is hence relevant for practical purposes. We prove an
oracle inequality and minimax rates are achieved by our estimator for Sobolev regularity classes.
Eventually, a numerical section shows the good performances of the whole estimation procedure.

The paper is organized as follows. Section 2 is devoted to the identifiability of the model.
Section 3 tackles the estimation of the parameter θ0 whereas Section 4 focuses on the estimation
of the nonparametric part. Finally Section 5 presents numerical implementations of our procedure.
Proofs are gathered in Section 6.
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2 Identifiability

In this section, to keep the notation as light and clear as possible, we drop the subscript 0 in the
parameters. For any function g and any angle α, denote gα(x) := g(x−α). For any complex number
a, a is the complex conjugate of a. For any integrable function φ : S1 → R, we denote for any l ∈ Z,
φ?l =

∫
S1 φ(x)e−ilx dx2π , the Fourier coefficients.

Let us now study the identifiability of model (1.1). First, it is obvious that if p = 0, α is not
identifiable, and if p = 1, β is not identifiable. In the same way, p is not identifiable if α = β.
Moreover, as explained in Hunter et al. (2007) for a translation mixture on the real line, the case
p = 1/2 has to be avoided. Indeed, denoting g a density and for instance f = 1

2g1 + 1
2g−1 and

f ′ = 1
2g2 + 1

2g−2 we have
f1 + f5 = f ′2 + f ′4.

In addition, it is well known that, in such a mixture model, (p, α, β) cannot be distinguished from
(1 − p, β, α): it is the so-called label switching problem. So we will assume that p ∈ (0, 1/2) (for
mixtures on R it is assumed alternatively that α < β but ordering angles is less relevant).

Now let us study the specific problems of identifiability on the circle, that do not appear on R.
First, if f is the uniform probability, the model is not identifiable, so we have to exclude this case.
Another case to exclude is the case of δ-periodic functions. Indeed in this case fα = fα+δ. These
functions have the property that f?l = 0 for all l /∈ (2π/δ)Z. So we will require that the Fourier
coefficients of f do not cancel out too much. Here we will assume

for all l ∈ {1, 2, 3, 4}, f?l 6= 0, and f?l = f?l.

This last assumption can be related to the symmetry of f . Indeed if f is zero-symmetric then all its
Fourier coefficients are real. Symmetry is a usual assumption in this mixture context, to distinguish
between the translations of f : for any δ ∈ R,

pf(x− α) + (1− p)f(x− β) = pfδ(x− α+ δ) + (1− p)fδ(x− β + δ)

More precisely, Hunter et al. (2007) show that symmetry is a sufficient and necessary condition for
identifiability of the model mixture on R. In the circle framework, it is natural to work with Fourier
coefficients rather than Fourier transform as on R. A lot of circular densities have their Fourier
coefficients real, provided that their location parameter is µ = 0: for example the Jones-Pewsey
density, which includes the cardioid, the wrapped Cauchy density, and the von Mises density. Here
we require the assumption only for the first 4 Fourier coefficients of f (due to our proof), which is
milder than symmetry.

Let us now state our identifiability result under these assumptions. Note that Holzmann et al.
(2004) have studied the identifiability of this model when f belongs to a parametric scale-family of
densities, but here we face a nonparametric problem concerning f .

Theorem 1. Assume that θ = (p, α, β) and θ′ = (p′, α′, β′) belong to{
(p, α, β) ∈ (0, 1/2)× S1 × S1, α 6= β (mod 2π)

}
and that f, f ′ belongs to{

f : S1 → R density such that, for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}
}
.

Suppose pfα + (1− p)fβ = p′f ′α′ + (1− p′)f ′β′ . Then
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1. either (p′, α′, β′)=(p, α, β) and f ′ = f ,

2. or (p′, α′, β′) = (p, α+ π, β + π) and f ′ = fπ

3. or if β − α = π (mod 2π) then f ′ is a linear combination of f and fπ, and either (α′, β′) =
(α, β), or (α′, β′) = (β, α).

4. or if β − α = ±2π/3 (mod 2π) then f ′ is a linear combination of fπ/3, f−π/3, fπ and p′ =
(1− 2p)/(2− 3p) and

(a) if β − α = 2π/3, (α′, β′) = (α+ π, β − π/3),

(b) if β − α = −2π/3, (α′, β′) = (α+ π, β + π/3)

Case 2. arises from a specific feature of circular distributions: if f is symmetric with respect to
0 then it is symmetric with respect to π. Unlike the real case, a symmetry assumption does not
exclude the case f ′(x) = f(x − π). To bypass this we could assume for instance f?1 > 0. Indeed
for each l ∈ Z, (fπ)?l = f?l(−1)l, so the Fourier coefficients of f and fπ have opposite sign for
any odd l. With our assumption, we recover among f and fπ the one with positive first Fourier
coefficient, i.e. with positive mean resultant length. Neverthless our estimation procedure begins
with the parametric part so that this assumption concerning only the nonparametric part will not
allow us to distinguish α from α+ π in this first parametric estimation step. That is why we rather
choose to assume that α and β belong to [0, π) (mod π).

Case 3. concerns bipolar data since α and β are diametrically opposed (separated by π radians).
In this case α and β are identifiable, but p and f not. Indeed, for any density f and any p′, we can
find q such that f ′ = qf + (1− q)fπ verifies pfα + (1− p)fβ = p′f ′α′ + (1− p′)f ′β′ .

Let us now discuss the case 4., which is the most curious (we shall only comment the first case
(a), the other is similar). Let us set

f ′(x) = (1− p)f
(
x− π

3

)
+ (1− p)f

(
x+

π

3

)
+ (2p− 1)f(x− π)

as represented in Figure 1. This function is symmetric if f is symmetric. Then we can write f ′π/3:

f ′
(
x− π

3

)
= (1− p)f

(
x− 2π

3

)
+ (1− p)f (x) + (2p− 1)f

(
x− 4π

3

)
,

as well as f ′π:

f ′(x− π) = (1− p)f
(
x− 4π

3

)
+ (1− p)f

(
x− 2π

3

)
+ (2p− 1)f(x).

Hence a mixture of f ′π and f ′π/3 gives a mixture of f(x), f(x− 2π
3 ), f(x− 4π

3 ):

p′f ′(x− π) + (1− p′)f ′
(
x− π

3

)
= [p′(2p− 1) + (1− p′)(1− p)]f(x)

+[p′(1− p) + (1− p′)(1− p)]f
(
x− 2π

3

)
+[p′(1− p)) + (1− p′)(2p− 1)]f

(
x− 4π

3

)
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Figure 1: Plot of a circular density f (dashed blue), and of f ′ = (1− p)fπ
3

+ (1− p)f−π
3

+ (2p− 1)fπ
(solid red). Here f is the von Mises density with mean 0 and concentration 1.

If now p′ = (1−2p)/(2−3p), then p′(1−p)+(1−p′)(2p−1) = 0 and the third component f(x− 4π
3 )

vanishes. Thus

p′f ′(x− π) + (1− p′)f ′
(
x− π

3

)
= pf(x) + (1− p)f

(
x− 2π

3

)
.

In such a particular case, we cannot identify θ nor f . However this happens only when β − α =
±2π/3. So, to exclude these case, we will now assume β 6= α (mod 2π/3).

Finally, we shall assume that f ∈ F with some assumptions for F :

Assumption 1.

F ⊂
{
f : S1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}

}
or

Assumption 2.

F ⊂
{
f : S1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}, f?1 > 0

}
and we shall assume that θ ∈ Θ with some assumptions for Θ:
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Assumption 3.

Θ ⊂
{

(p, α, β) ∈
(

0,
1

2

)
× S1 × S1, α 6= β (mod π, 2π/3)

}
where α 6= β (mod 2π/3, π) means β − α /∈ {−2π

3 , 0,
2π
3 , π}+ 2πZ, or

Assumption 4.

Θ ⊂
{

(p, α, β) ∈
(

0,
1

2

)
× [0, π)× [0, π), α 6= β (mod 2π/3)

}
Note that Assumption 4 implies Assumption 3, and Assumption 2 implies Assumption 1. We

can write the following result.

Corollary 2. Under Assumptions 1 and 4, or under Assumptions 2 and 3, model (1.1) is identifiable.
Under Assumptions 1 and 3, model (1.1) is identifiable modulo π, that is to say that if pfα + (1 −
p)fβ = p′f ′α′+(1−p′)f ′β′ then p′ = p and either (α′, β′)=(α, β) and f ′ = f , or (α′, β′) = (α+π, β+π)
and f ′ = fπ.

Moreover, the proof of Theorem 1 provides the following statement.

Lemma 3. Under Assumption 3, denoting M l(θ) := pe−iαl + (1− p)e−iβl, for all θ, θ′ ∈ Θ,

∀1 ≤ l ≤ 4, Im
(
M l(θ′)M l(θ)

)
= 0⇔ θ′ = θ or θ′=θ + π.

where θ′=θ + π means (p′, α′, β′) = (p, α+ π, β + π).

3 Estimation for the parametric part

Now, let us denote for all l ∈ Z

M l(θ) := pe−iαl + (1− p)e−iβl.

In model (1.1) the Fourier coefficients of g satisfy for any l:

g?l = (p0e
−iα0l + (1− p0)e−iβ0l)f?l.

Thus g?l = M l(θ0)f?l and the previous lemma gives that θ = θ0 (or θ0 + π) if and only if, for
each l ∈ {1, . . . , 4},

Im
(
M l(θ0)M l(θ)

)
= 0⇔ Im

(
g?lM l(θ)

)
= 0

using that f?l are non-zero real numbers. This invites us to consider

S(θ) :=

4∑
l=−4

(
Im
(
g?lM l(θ)

))2
=

4∑
l=−4

(
Im
(
g?l{peiαl + (1− p)eiβl}

))2
.

Note that g?0M0(θ) = 1/(2π) and that Im
(
g?(−l)M−l(θ)

)
= Im

(
g?lM l(θ)

)
= −Im

(
g?lM l(θ)

)
so

that we can also write

S(θ) = 2
4∑
l=1

(
Im
(
g?lM l(θ)

))2
.
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The empirical counterpart of S(θ) is

S̃n(θ) =
4∑

l=−4

(
Im
(
ĝ?lM l(θ)

))2

=
4∑

l=−4

(
Im

(
1

2πn

n∑
k=1

e−ilXkM l(θ)

))2

=
1

4π2n2

4∑
l=−4

∑
1≤k,j≤n

Im
(
eilXkM l(θ)

)
Im
(
eilXjM l(θ)

)
.

Next, we consider a slightly modified version of S̃n(θ) by removing the diagonal terms

Sn(θ) =
1

4π2n(n− 1)

4∑
l=−4

∑
1≤k 6=j≤n

Im
(
eilXkM l(θ)

)
Im
(
eilXjM l(θ)

)
. (3.1)

Let us denote

Z lk(θ) := Im

(
eilXk

2π
M l(θ)

)
and J l(θ) := Im

(
g?lM l(θ)

)
.

Hence

Sn(θ) =
1

n(n− 1)

4∑
l=−4

∑
k 6=j

Z lk(θ)Z
l
j(θ).

Note that we have E(Z lk(θ)) = J l(θ), and Sn(θ) is an unbiased estimator of S(θ).
Let the estimator of θ0 be

θ̂n = argmin θ∈Θ Sn(θ). (3.2)

For this estimator we can prove the following consistency result.

Theorem 4. Consider Θ a compact set included in{
(p, α, β) ∈ (0, 1/2)× S1 × S1, α 6= β (mod 2π/3, π)

}
and the estimator θ̂n = argmin θ∈Θ Sn(θ). We have θ̂n → θ0 (mod π) in probability.

The last convergence means that for all ε > 0, the probability P(‖θ̂n−θ0‖ ≤ ε or ‖θ̂n−θ0−π‖ ≤ ε)
tends to 1 when n goes to +∞, where ‖.‖ denotes the Euclidean norm.

Proof. Θ is a compact set and S is continuous. Lemma 12 ensures that Sn is Lipschitz hence uni-
formly continuous, and Proposition 13 ensures that for all θ, |Sn(θ)−S(θ)| tends to 0 in probability.
Then it is sufficient to apply a classical Lemma to conclude. See the details in Section 6.2

From now on, we assume that Θ is a compact set included in
(
0, 1

2

)
× [0, π) × [0, π), as in

Assumption 4. Then, θ0 + π is excluded and under Assumption 4, θ̂n → θ0 in probability. Moreover
this estimator is asymptotically normal. We denote φ̇(θ) the gradient of any function φ with respect
to θ = (p, α, β), φ̈(θ) the Hessian matrix and for any matrix A, we denote A> its transpose.
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Theorem 5. Consider Θ a compact set included in

{(p, α, β) ∈ (0, 1/2)× [0, π)× [0, π), α 6= β (mod 2π/3)}

and the estimator θ̂n = argmin θ∈Θ Sn(θ). Let A be the Hessian matrix of S in θ0: A = S̈(θ0) =
2
∑4

l=−4 J̇
l(θ0)J̇ l(θ0)>. Then, if A is invertible,

√
n(θ̂n − θ0)

d−→ N (0,Σ),

where Σ = A−1VA−1, V = 4E(UU>) and U =
∑4

l=−4 J̇
l(θ0)Z l1(θ0).

The proof can be found in Section 6.3.

4 Nonparametric part

Let us now estimate the nonparametric part. We shall use the following norm: for any function φ,
we denote ‖φ‖2 =

(
1

2π

∫
S1 φ

2(x)dx
)1/2

. Recall that for all l ∈ Z, g?l = M l(θ0)f?l where g is the
density of the observations Xk and g?l its Fourier coefficient. Then f?l = g?l/M l(θ0). We can verify
that M l(θ0) 6= 0. Indeed, for any θ ∈ Θ,

|M l(θ)|2 = p2 + (1− p)2 + 2p(1− p) cos[l(β − α)] ≥ (1− 2p)2 > 0.

Nevertheless this division by M l(θ0) lead us to impose a new assumption. We assume that there
exists P ∈ (0, 1/2) such that 0 < p < P for any p, ie.

Assumption 5. Θ is a compact set included in

{(p, α, β) ∈ (0, P )× [0, π)× [0, π), α 6= β (mod 2π/3)}

Under this assumption, |M l(θ)| is always bounded from below by 1 − 2P . Now, to estimate
g?l =

∫
S1 e
−ilxg(x)dx/(2π), it is natural to define

ĝ?l =
1

2πn

n∑
k=1

e−ilXk .

If θ̂ = θ̂n is the previous estimator of the parametric part, we set the plugin estimator of the Fourier
coefficient:

f̂?l =
1

2πn

n∑
k=1

M l(θ̂)−1e−ilXk .

Finally, for L a positive integer, set

f̂L(x) =
L∑

l=−L
f̂?leilx.

To measure the performance of this estimator, we use Parseval equality to write

‖f − f̂L‖22 =
∑
|l|>L

|f?l|2 +

L∑
l=−L

|f?l − f̂?l|2
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which is the classical bias variance decomposition. Moreover it is possible to prove that the variance
term satisfy

∑L
l=−L E|f?l − f̂?l|2 = O(2L+1

n ) (see Lemma 16 below). To control the bias term we
recall the definition of the Sobolev ellipsoid:

W (s,R) = {f : S1 → R,
∑
l∈Z
|l|2s|f?l|2 ≤ R2}.

For such a smooth f , the risk of estimator f̂L is then bounded in the following way:

E‖f − f̂L‖22 ≤ R2L−2s + C
2L+ 1

n
.

It is clear that an optimal value for L is of order n1/(2s+1) but this value in unknown. We rather
choose a data-driven method to select L. We introduce a classical minimization of a penalized
empirical risk. Set

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n

}
(4.1)

where L is a finite set of resolution level, and λ a constant to be specified later. The next theorem
states an oracle inequality which highlights the bias variance decomposition of the quadratic risk
and justifies our estimation procedure.

Theorem 6. Assume Assumption 5 and Assumption 1. Assume that f belongs to the Sobolev
ellipsoid W (s,R) with s > 1/2. Let L = {1, . . . , b(n − 1)/2c} and ε > 0. If the penalty constant
verifies λ > (1 + ε−1)(1− 2P )−2 then,

E‖f̂
L̂
− f‖22 ≤ (1 + 2ε)Emin

L∈L

{
‖f̂L − f‖22 + 2λ

2L+ 1

n

}
+
C

n

where C is a positive constant depending on ε, ‖f‖2, P, θ0, R, s. Moreover

E‖f̂
L̂
− f‖22 = O

(
n−2s/(2s+1)

)
.

In consequence our estimator has a quadratic risk in n−2s/(2s+1) which is known to be the optimal
rate of convergence for estimating a density with smoothness s.

Remark 1. The proof of the oracle inequality stated in Theorem 6 works for any L ⊂ N with ]L
not larger than a power of n and max(L) → ∞. The rate of convergence is obtained if L contains
cn1/(2s+1). Note that the penalty only depends on P which is some safety margin around 1/2, that
can be chosen by the statistician. For the practical choice of the penalty, see Section 5.

Eventually, note that some densities may be supersmooth, in the following sense:∑
l∈Z

exp(2b|l|r)|f?l|2 ≤ R2.

In this case, the quadratic bias is bounded by R2 exp(−2bLr) which gives the following fast rate of
convergence:

E‖f̂
L̂
− f‖22 = O

(
(log n)1/r

n

)
.
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5 Numerical results

All computations are performed with Matlab software and the Optimization Toolbox.
We shall implement our statistical procedure to both estimate the parameter θ0 and the density

f . We consider three popular circular densities namely, the von Mises density, the wrapped Cauchy
and the wrapped normal densities. We remind their expression (see Ley and Verdebout (2017)).
The von Mises density is given by:

fVM (x) =
1

2πI0(κ)
eκ cos(x−µ),

with κ ≥ 0, I0(κ) the modified Bessel function of the first kind and of order 0. The wrapped Cauchy
density has density:

fWC(x) =
1

2π

1− γ2

1 + γ2 − 2γ cos(x− µ)
,

with 0 ≤ γ ≤ 1. The wrapped normal density expression is:

fWN (x) =
1

σ
√

2π

∞∑
k=−∞

e−
(x−µ+2kπ)2

2σ2 ,

σ > 0. For more clarity, we set σ2 =: −2 log(ρ). Hence, we have 0 ≤ ρ ≤ 1.
All these densities are characterized by a concentration parameter κ, γ or ρ and a location

parameter µ. Remind that values κ = 0, γ = 0 and ρ = 0 correspond to the uniform density on the
circle. To meet symmetry assumptions of Theorem 1, we consider in the sequel that the location
parameter is set to µ = 0.

First, let us focus on the parametric part. We set θ0 = (p0, α0, β0) = (1
4 ,

π
8 ,

2π
3 ). Obtaining the

estimate θ̂n of θ0 (see (3.2)) requires to solve a nonlinear minimization problem. To this end, we
resort to the function fmincon of the Matlab Optimization toolbox. The function fmincon finds
a constrained minimum of a function of several variables. Two parameters are to be specified:
the domain over which the minimum is searched and an initial value. We consider the domain
{(0, 1

2) × [0, π) × [0, π)}. For more stability and to avoid possible local minimums, we perform the
procedure over 10 initials values uniformly drawn on {(0, 1

2)× [0, π)× [0, π)}. The final estimator θ̂n
corresponds to the minimum value of the empirical contrast Sn(θ) given in (3.1) over the 10 trials.

Table 1 gathers mean squared errors for our estimation procedure. When analyzing Table 1, one
clearly sees that increasing the number of observations improves noticeably the performances. As
expected, von Mises densities with smaller concentration parameter are more difficult to estimate.
Nonetheless, the overall performances are satisfying. Table 2 displays the performances of the
method-of-moments estimation procedure developed by Spurr and Koutbeiy (1991) to handle the
problem of estimating the parameters in mixtures of von Mises distributions. In bold, in Table 1,
we point out cases for which our procedure outperforms the Spurr and Koutbeiy one. At closer
inspection of Tables 1 and 2, for the von Mises density with κ = 2 and n = 1000, the Spurr
and Koutbeiy procedure is better. Otherwise, the performances of the two procedures are pretty
similar and good. It is worth noticing that the method in Spurr and Koutbeiy (1991) is completely
parametric and takes advantage of the knowledge of the distributions. In this regard, our procedure
which is semiparametric is competitive with a parametric method.

Figure 2 illustrates the asymptotic normality of our estimator θ̂n stated in Theorem 5.
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density n = 100 n = 1000
p α β p α β

fVM , κ = 2 0.0121 0.6848 0.1131 0.0017 0.1919 0.0238
fVM , κ = 5 0.0030 0.0285 0.0049 1.4632e-04 0.0017 4.4861e-04
fVM , κ = 7 0.0033 0.0133 0.0031 1.6721e-04 0.0013 3.0102e-04
fWC , ρ = 0.8 0.0029 0.0124 0.0024 2.0788e-04 8.5435e-04 1.8942e-04
fWN , ρ = 0.8 0.0077 0.1679 0.0457 0.0020 0.0238 0.0037

Table 1: Mean squarred errors for estimating parameter θ0 over 50 Monte Carlo replications.

density n = 100 n = 1000
p α β p α β

fVM , κ = 2 0.0938 0.4212 0.1171 0.0062 0.0685 0.0062
fVM , κ = 5 0.0031 0.0360 0.0049 2.9965e-04 0.0025 6.6273e-04
fVM , κ = 7 0.0031 0.0084 0.0029 2.4553e-04 0.0014 3.5541e-04

Table 2: Spurr and Koutbeiy procedure: mean squared errors for estimating parameter θ0 over 50
Monte Carlo replications.

p α β

Figure 2: Histograms of the centered and standardized statistics θ̂n for the von Mises density fVM
with κ = 5, n = 1000 and 100 Monte Carlo replications.

Now, let us turn to the nonparametric estimation part namely the estimation of the density f .
The estimator of f is given by f̂

L̂
(see Theorem 6). It requires the computation of a data-driven

resolution level choice L̂ (given in (4.1)) which implies a tuning parameter λ. To select the proper
λ, we follow the data-driven slope estimation approach due to Birgé and Massart (see Birgé and
Massart (2001) and Birgé and Massart (2007)) and whose an overview in practice is presented in
Baudry et al. (2012). To implement the slope heuristics method, one has to plot for L = 1 to Lmax,
the couples of points (2L+1

n ,
∑L

l=−L |f̂?l|2). For L ≥ L0, one should observe a linear behaviour (see
Figure 3). Then, once the slope is estimated, say a, by a linear regression method, one eventually
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takes λ̂ = 2a and the final resolution level is:

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ̂
2L+ 1

n

}
.

0 0.02 0.04 0.06 0.08 0.1 0.12
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

(2L
0
+1)/n

Figure 3: For the wrapped Cauchy density fWC with γ = 0.8 and n = 1000: plot of couples
(2L+1

n ,
∑L

l=−L |f̂?l|2) for L = {1, . . . , 50}.

Finally, Figure 4 shows reconstructions of the density f and the mixture density g as well. The
estimates are good.

6 Proofs

6.1 Proof of Theorem 1 (identifiability)

Denote
M l(θ) := pe−iαl + (1− p)e−iβl.

Suppose pf(x − α) + (1 − p)f(x − β) = p′f ′(x − α′) + (1 − p′)f ′(x − β′). The calculation of the
Fourier coefficients gives, for all l ∈ Z, f?lM l(θ) = (f ′)?lM l(θ′) which implies

f?l|M l(θ)|2 = (f ′)?lM l(θ′)M l(θ).

Then, our assumptions on f and f ′ entail

M l(θ′)M l(θ) is real ∀l ∈ {1, . . . , 4}.

Let us now study the consequence of this fact. Denote

γ1 = α′ − β, γ2 = α′ − α, γ3 = β′ − β, γ4 = β′ − α

the 4 angles. Denote also the associated weights in (0, 1):

λ1 = p′(1− p), λ2 = p′p, λ3 = (1− p′)(1− p), λ4 = p(1− p′).

12
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Figure 4: Estimation of the density f and the mixture density g for n = 1000. From top to bottom:
the von Mises density with κ = 5, the wrapped Cauchy with γ = 0.8 and the wrapped normal
density with ρ = 0.8.

With this notation

M l(θ′)M l(θ) = λ1e
−iγ1l + λ2e

−iγ2l + λ3e
−iγ3l + λ4e

−iγ4l.
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Then M l(θ′)M l(θ) is real if and only if
∑4

k=1 λk sin(lγk) = 0 and we have to solve the equations

∀l = 1, 2, 3, 4,

4∑
k=1

λk sin(lγk) = 0. (6.1)

This system of equations is studied in Lemmas 7 and 8 below.
Let us now reason with the representatives of the γk in (−π, π]. Lemma 8 says that the possible

values for the γk’s are 0, π, γ,−γ, for some γ ∈ (0, π). Note that here

γ1 − γ2 = γ3 − γ4 = α− β 6= 0 and γ1 − γ3 = γ2 − γ4 = α′ − β′ 6= 0 (6.2)

and then the γk’s take at least 2 different values: either 4 different values; or γ2 = γ3 and the other
distinct; or γ1 = γ4 and the other distinct; or γ2 = γ3 and γ1 = γ4.
• Let us first study the case where all the γk’s are distinct. There are 4!=24 ways of having

(γi1 , γi2 , γi3 , γi4) = (−γ, 0, γ, π). But 16 combinations lead to p = 1/2 or p′ = 1/2. For example, if
(γ1, γ2, γ3, γ4) = (−γ, 0, γ, π) then (6.1) becomes

λ1 sin(−lγ) + λ2 sin(0) + λ3 sin(lγ) + λ4 sin(lπ) = 0.

Thus λ1 = λ3, which gives p′ = 1/2. In the same way, there are 4 possibilities giving λ1 = λ3, 4
possibilities giving λ1 = λ2, 4 possibilities giving λ2 = λ4, 4 possibilities giving λ3 = λ4. All of this
is impossible, since p ∈ (0, 1) and p 6= 1/2. In addition, in the 4 cases where γ1 = −γ4, we obtain
via (6.2) γ3 = −γ2 which is impossible if {γ2, γ3} = {0, π}. Idem if γ2 = −γ3 and {γ1, γ4} = {0, π}.
Thus it is finally impossible that all the γk’s are distinct.
• Let us now study the case where the γk’s take 3 distinct values (γ2 = γ3 or γ1 = γ4) and belong

to {0, π, γ} or {0, π,−γ}. In the case where γ2 = γ3, coming back to equation (6.1), we understand
that all the rearrangements lead to λ4 = 0 or λ1 = 0 or λ2 + λ3 = 0, which is impossible. In the
same way, if γ1 = γ4, equation (6.1) leads to λ2 = 0 or λ3 = 0 or λ1 + λ4 = 0, which is impossible.
• The next case is when the γk’s take 3 distinct values and belong to {0, γ,−γ} or {π, γ,−γ}.

If γ2 = γ3, we can then list the 6 cases:

γ1 γ2 = γ3 γ4 consequence
−γ 0/π γ p = p′, α′ = α, β′ = β (mod π)
γ 0/π −γ p = p′, α′ = α, β′ = β (mod π)
−γ γ 0/π λ1 = λ2 + λ3

γ −γ 0/π λ1 = λ2 + λ3

0/π γ −γ λ4 = λ2 + λ3

0/π −γ γ λ4 = λ2 + λ3

Note that λ1 = λ2 + λ3 ⇔ p′(2− 3p) = 1− p, which is possible only if p < 1/2 and p′ > 1/2 (recall
that we suppose p < 1/2 and p′ < 1/2). In the same way λ4 = λ2 +λ3 ⇔ p′(1− 3p) = 1− 2p, which
is possible only if p > 1/2 and p′ < 1/2.
Finally, if γ1 = γ4, we have the 6 last cases:

γ2 γ1/γ4 γ3 consequence
−γ 0/π γ p′ = 1− p
γ 0/π −γ p′ = 1− p,
−γ γ 0/π p′ = p

3p−1

γ −γ 0/π p′ = p
3p−1

0/π γ −γ p′ = 1−2p
2−3p , β − α = 2π/3, α′ = α+ π, β′ = α− π/3

0/π −γ γ p′ = 1−2p
2−3p , β − α = −2π/3, α′ = α+ π, β′ = α+ π/3

14



Note that p′ = p/(3p− 1) > 1/2 if p < 1/2.
• The last case occurs when the γk’s take 2 distinct values. If the γk’s take exactly 2 different

values, necessarily

γ1 = γ4 (mod 2π) and γ2 = γ3 (mod 2π)⇒ 0 = γ1 − γ4 + γ3 − γ2 = 2(α− β) (mod 2π)

which is possible only if α − β = π (mod 2π) (recall that α − β is always assumed 6= 0). And in
the same way α′ − β′ = π (mod 2π). Then γ1 − γ2 = α− β = π (mod 2π). Thus the two different
values of the γk are at a distant of π. The first possibility is that these two values are 0 and π, which
corresponds to the first case of Lemma 8. There are two subcases: 1a. (γ1, γ2, γ3, γ4) = (π, 0, 0, π)
or 1b. (γ1, γ2, γ3, γ4) = (0, π, π, 0). In the subcase 1a. (α′, β′) = (α, β). Equations{

pf + (1− p)fπ = p′f ′ + (1− p′)f ′π
pfπ + (1− p)f = p′f ′π + (1− p′)f ′

entails that f ′ is a linear combination of f and fπ. In the subcase 1b. (α′, β′) = (α+π, β+π) = (β, α).
The second possibility is that the two distinct values γ1 = γ4 and γ2 = γ3 are not multiples of

π, which corresponds to the fourth case of Lemma 8. Then (γ1, γ2, γ3, γ4) = (γ1,−γ1,−γ1, γ1) and

γ1 − (−γ1) = γ1 − γ2 = π (mod 2π)

which entails γ1 = π/2 (mod π). Equation (6.1) becomes

(λ1 − λ2 − λ3 + λ4) sin(lπ/2) = 0

so that λ1 + λ4 = λ2 + λ3, which gives

p′(1− p) + p(1− p′) = p′p+ (1− p′)(1− p)⇒ p′ + p− 2pp′ = 1/2⇒ p′ = 1/2

which is impossible.
• Let us recap the only possible cases that we have obtained:
. p = p′, α′ = α, β′ = β (mod π),
. p′ = 1−2p

2−3p , β − α = 2π/3, α′ = α+ π, β′ = α− π/3,
. p′ = 1−2p

2−3p , β − α = −2π/3, α′ = α+ π, β′ = α+ π/3,
. α− β = π, (α′, β′) = (α, β) or (α′, β′) = (β, α).
This completes the proof of the theorem.

Lemma 7. Let γ1, . . . , γ4 be four reals. Let A be the matrix (sin(iγj))1≤i,j≤4. Then

detA = 64
4∏

k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)− cos(γj)).

Proof. From matrix A, doing line modification L3 ← L3 − L1, and L4 ← L4 − L2, we obtain (recall
that sin(2p) = 2 sin(p) cos(p) and sin(p)− sin(q) = 2 sin(p−q2 ) cos(p+q2 ))

detA =

∣∣∣∣∣∣∣∣
sin(γ1) sin(γ2) sin(γ3) sin(γ4)

2 sin(γ1) cos(γ1) 2 sin(γ2) cos(γ2) 2 sin(γ3) cos(γ3) 2 sin(γ4) cos(γ4)
2 sin(γ1) cos(2γ1) 2 sin(γ2) cos(2γ2) 2 sin(γ3) cos(2γ3) 2 sin(γ4) cos(2γ4)
2 sin(γ1) cos(3γ1) 2 sin(γ2) cos(3γ2) 2 sin(γ3) cos(3γ3) 2 sin(γ4) cos(3γ4)

∣∣∣∣∣∣∣∣ .
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Using 4-linearity of the determinant:

detA = 8

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
cos(γ1) cos(γ2) cos(γ3) cos(γ4)
cos(2γ1) cos(2γ2) cos(2γ3) cos(2γ4)
cos(3γ1) cos(3γ2) cos(3γ3) cos(3γ4)

∣∣∣∣∣∣∣∣ .
Now, denote xk = cos(γk) and remark that cos(iγk) = Ti(cos γk) = Ti(xk) where Ti is the ith
Chebyshev polynomial: T0 = 1, T1 = X,T2 = 2X2 − 1, T3 = 4X3 − 3X. We have T2 + T0 = 2X2

and T3 + 3T1 = 4X3. Then, doing L3 ← L3 + L1, and L4 ← L4 + 3L2:

detA = 8

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

2x2
1 2x2

2 2x2
3 2x2

4

4x3
1 4x3

2 4x3
3 4x3

4

∣∣∣∣∣∣∣∣ = 64

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4

x3
1 x3

2 x3
3 x3

4

∣∣∣∣∣∣∣∣
This is a Vandermonde matrix, hence

detA = 64

 4∏
j=1

sin(γj)

 ∏
1≤i<j≤4

(xi − xj) = 64
4∏

k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)− cos(γj)).

Lemma 8. Let γ1, . . . , γ4 be four reals. Let λ1, . . . , λ4 ∈ R\{0} such that

4∑
k=1

λk sin(lγk) = 0, l = 1, . . . , 4. (6.3)

Then, one of the following cases holds:

1. All γk are multiples of π.

2. Exactly two γk are multiples of π: γi1 = γi2 = 0 (mod π) and γi3 = ±γi4 (mod 2π).

3. Only one γk is multiple of π: γi1 = 0 (mod π) and γi2 = ±γi3 = ±γi4 (mod 2π).

4. No γk is multiple of π and γ1 = ±γ2 = ±γ3 = ±γ4 (mod 2π).

Proof. First observe that, since
∑4

k=1 λk sin(lγk) = 0 with λ 6= 0R4 , necessarily det(A)=0 where
A = (sin(iγj))1≤i,j≤4. Using Lemma 7

4∏
k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)− cos(γj)) = 0. (6.4)

Now, let us study the various cases that make this quantity vanish.

For the first case, note that if three γk are multiples of π: γi1 = γi2 = γi3 = 0 (mod π) then
equation (6.3) becomes λi4 sin(lγi4) = 0 and the last angle is also null modulo π.
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In case 2., equation (6.3) entails

λi3 sin(lγi3) + λi4 sin(lγi4) = 0, l = 1, 2

with γi3 6= 0 (mod π), γi4 6= 0 (mod π). Then, since (λi3 , λi4) 6= (0, 0),

0 =

∣∣∣∣ sin(γi3) sin(γi4)
sin(2γi3) sin(2γi4)

∣∣∣∣ = 2 sin(γi3) sin(γi4)(cos(γi4)− cos(γi3)).

Then cos(γi3) = cos(γi4). Either γi3 = γi4 (mod 2π), or γi3 = −γi4 (mod 2π).

Let us now study case 3. For the sake of simplicity we assume that γ4 = 0 (mod π) and γk 6= 0
(mod π) for k = 1, 2, 3. Equation (6.3) gives

λ1 sin(lγ1) + λ2 sin(lγ2) + λ3 sin(lγ3) = 0, l = 1, 2, 3.

With the same proof as Lemma 7, we obtain
3∏

k=1

sin(γk)
∏

1≤i<j≤3

(cos(γi)− cos(γj)) = 0.

Then γ1 = ±γ2 (mod 2π) or γ1 = ±γ3 (mod 2π) or γ2 = ±γ3 (mod 2π). Moreover, if, for example,
γ1 = ±γ2 (mod 2π) then

(λ1 ± λ2) sin(lγ1) + λ3 sin(lγ3) = 0, l = 1, 2

We are reduced to the previous case, then γ1 = ±γ3 (mod 2π).

In the case 4., equation (6.4) becomes
∏

1≤i<j≤4(cos(γi)−cos(γj)) = 0, which provides 6 possible
equalities. Assume, for example, cos(γ1)− cos(γ2) = 0 and consequently γ1 = ±γ2 (mod 2π). Then

(λ1 ± λ2) sin(lγ1) + λ3 sin(lγ3) + λ4 sin(lγ4) = 0, l = 1, 2, 3.

Reasoning as in previous case, γ1 = ±γ3 = ±γ4 (mod 2π).

6.2 Proof of Theorem 4 (consistency)

This proof and the following are inspired from Butucea and Vandekerkhove (2014). Let us denote
Θ̃ = (0, 1/2) × S1 × S1. Denote φ̇(θ) the gradient of any function φ with respect to θ = (p, α, β),
and φ̈(θ) the Hessian matrix.

The proof of Theorem 4 relies on some preliminary results, given in the sequel.

Proposition 9. Under Assumption 3 the contrast function S verifies the following properties:
S(θ) ≥ 0, and S(θ) = 0 if and only if θ = θ0 or θ = θ0 + π.

Proof. It is clear that S(θ) ≥ 0 and that

S(θ0) =
4∑

l=−4

(
Im
(
g?lM l(θ0)

))2
=

4∑
l=−4

(
Im
(
f?l|M l(θ0)|2

))2
= 0.

By Lemma 3, if θ 6= θ0 (mod π), there exists l1 ∈ {1, . . . , 4} such that Im
(
M l1(θ0)M l1(θ)

)
6= 0 so

that S(θ) ≥
(
Im
(
g?l1M l1(θ)

))2
> 0.
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Lemma 10. 1. For all θ in Θ̃, |M l(θ)| ≤ 1.

2. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

|Z lk(θ)| ≤
1

2π
, sup

θ∈Θ̃

|J l(θ)| ≤ 1

2π
.

3. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

‖Ż lk(θ)‖ ≤
1 + |l|√

2π
, sup

θ∈Θ̃

‖J̇ l(θ)‖ ≤ 1 + |l|√
2π

.

where ‖.‖ is the Euclidean norm.

4. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

‖Z̈ lk(θ)‖F ≤
|l|+ l2

π
, sup

θ∈Θ̃

‖J̈ l(θ)‖F ≤
|l|+ l2

π
.

where ‖.‖F is the Frobenius norm.

Proof. Point 1 is straightforward.
2. Let us start with Z lk(θ). We recall that Z lk(θ) = Im

(
eilXk

2π M l(θ)
)
. Then

|Z lk(θ)| ≤
1

2π
|M l(θ)| ≤ 1

2π
.

Furthermore
|J l(θ)| ≤ |g?l||M l(θ)| ≤ 1

2π

∫
S1
g ≤ 1

2π
.

3. We have

Ż lk(θ) =
1

2π
Im
(
eilXkṀ l(θ)

)
=

1

2π
Im

eilXk
 e−ilα − e−ilβ

−ilpe−iαl
−il(1− p)e−iβl


and

J̇ l(θ) = Im
(
g?lṀ l(θ)

)
= Im

g?l
 e−ilα − e−ilβ

−ilpe−iαl
−il(1− p)e−iβl

 .

We get

‖J̇ l(θ)‖ ≤ 1

2π

(
2 + p2l2 + (1− p)2l2

)1/2 ≤ 1 + |l|√
2π

and we have the same bound for ‖Ż lk(θ)‖.
4. We have

Z̈ lk(θ) = Im

(
eilXk

2π
M̈ l(θ)

)

= Im

eilXk
2π

 0 −ile−ilα ile−ilβ

−ile−ilα −l2pe−ilα 0
ile−ilβ 0 −l2(1− p)e−iβl

 .
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Thus

‖Z̈ lk‖F ≤
1

2π

(
4l2 + l4p2 + l4(1− p)2

)1/2 ≤ |l|+ l2

π

This ends the proof of the lemma.

Lemma 11. There exists a numerical positive constant C such that the following inequalities hold.
1. For all 1 ≤ k ≤ n, for all l in Z

∀θ, θ′ ∈ Θ̃ ‖Ż lk(θ)− Ż lk(θ′)‖ ≤ C‖θ − θ′‖(1 + |l|+ l2).

2. We also have
‖Z̈ lk(θ)− Z̈ lk(θ′)‖F ≤ C‖θ − θ′‖(1 + |l|+ l2 + |l|3).

Proof. We use Taylor expansions at first order and then apply same bounding techniques as in
Lemma 10.

Lemma 12. 1. The function S is Lipschitz continuous over Θ̃.

2. The function Sn(θ) is Lipschitz continuous over Θ̃.

3. The function S̈n(θ) is Lipschitz continuous over Θ̃.

Proof. We will write C for a constant that may change from line to line but is numerical.
Let us start with point 1. We recall that S(θ) =

∑
l J

l(θ)2. Let θ and θ′ in Θ̃. As Θ̃ is a convex
set, we get, thanks to the mean value theorem

|S(θ)− S(θ′)| =

∣∣∣∣∣
4∑

l=−4

J l(θ)2 − J l(θ′)2

∣∣∣∣∣ =

∣∣∣∣∣2(θ − θ′)>
4∑

l=−4

J l(θu)J̇ l(θu)

∣∣∣∣∣
≤ C‖θ − θ′‖

4∑
l=−4

(1 + |l|) ≤ C‖θ − θ′‖

with θu lying between θ and θ′, and using Lemma 10.
Let us shift to point 2. Due to the mean value theorem, we have

|Sn(θ)− Sn(θ′)| =

∣∣∣∣∣∣ 1

n(n− 1)

∑
k 6=j

4∑
l=−4

(
Z lk(θ)Z

l
j(θ)− Z lk(θ′)Z lj(θ′)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

∑
k 6=j

4∑
l=−4

(
(θ − θ′)>∇[Z lk(θ)Z

l
j(θ)]|θ=θu

)∣∣∣∣∣∣
=

∣∣∣∣∣∣2(θ − θ′)>

n(n− 1)

∑
k 6=j

4∑
l=−4

Ż lk(θu)Z lj(θu)

∣∣∣∣∣∣ ,
with θu lying between θ and θ′. Then using 1. and 2. of Lemma 10 we get

|Sn(θ)− Sn(θ′)| ≤ C‖θ − θ′‖
n(n− 1)

∑
i 6=j

4∑
l=−4

(1 + |l|) ≤ C‖θ − θ′‖
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which ends the proof of the second point.
Concerning point 3. we have that

S̈n(θ) =
2

n(n− 1)

∑
k 6=j

4∑
l=4

(Z̈ lk(θ)Z
l
j(θ) + Ż lk(θ)Ż

l
j(θ)

>).

Hence

‖S̈n(θ)− S̈n(θ′)‖F ≤ 2

n(n− 1)

∑
k 6=j

4∑
l=−4

(
‖(Z̈ lk(θ)− Z̈ lk(θ′))Z lj(θ)‖F + ‖Z̈ lk(θ′)(Z lj(θ)− Z lj(θ′))‖F

+ ‖Ż lk(θ′)(Ż lj(θ)− Ż lj(θ′)>)‖F + ‖(Ż lk(θ′)− Ż lk(θ))Ż lj(θ)>‖F
)

Using Taylor expansions and Lemma 10 and 11, we get that

‖S̈n(θ)− S̈n(θ′)‖F ≤ C‖θ − θ′‖
4∑

l=−4

(1 + |l|+ l2 + |l|3).

Proposition 13. There exist a positive constant C such that

sup
θ∈Θ̃

E[(Sn(θ)− S(θ))2] ≤ C

n
.

Proof. The definitions of Sn and S provide

Sn(θ)− S(θ) = E

 1

n(n− 1)

4∑
l=−4

∑
k 6=j

(
Z lk(θ)Z

l
j(θ)− J l(θ)2

)2 = Tn + Vn

where

Tn =
2

n(n− 1)

4∑
l=−4

∑
k<j

(Z lk(θ)− J l(θ))(Z lj(θ)− J l(θ))

and

Vn =
2

n

4∑
l=−4

n∑
k=1

(Z lk(θ)− J l(θ))J l(θ).

Note that E(Z lk(θ)− J l(θ)) = 0 which entails E[TnVn] = 0. Then

E
[
(Sn(θ)− S(θ))2

]
= E

[
(Tn + Vn)2

]
= E

[
T 2
n

]
+ E

[
V 2
n

]
.

Now, since the variables
(∑4

l=−4(Z lk(θ)− J l(θ))(Z lj(θ)− J l(θ))
)
k<j

are uncorrelated,

E[T 2
n ] =

2

n(n− 1)
E

( 4∑
l=−4

(Z l1(θ)− J l(θ))(Z l2(θ)− J l(θ))

)2


≤ 2

n(n− 1)
E

( 4∑
l=−4

2

2π
· 2

2π

)2
 ≤ C

2n
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using Lemma 10. We focus now on Vn: in the same way

E[V 2
n ] =

4

n
E

( 4∑
l=−4

(Z l1(θ)− J l(θ))J l(θ)

)2


≤ 4

n
E

( 4∑
l=−4

Z l1(θ)J l(θ)

)2
 ≤ C

2n
,

using Lemma 10 again.

Theorem 4 is finally proved using the following lemma, its assumptions being ensured by Propo-
sition 9, Lemma 12 and Proposition 13.

Lemma 14. Assume that Θ is a compact set and let S : Θ→ R be a continuous function. Assume
that

S(θ) = min
Θ
S ⇔ θ = θ0 or θ = θ′0

where θ0, θ
′
0 ∈ Θ. Let Sn : Θ → R be a function which is uniformly continuous and such that for

all θ |Sn(θ) − S(θ)| tends to 0 in probability. Let θ̂n be a point such that Sn(θ̂n) = infΘ Sn. Then
θ̂n → θ0 or θ′0 in probability.

This is a classical result in the theory of minimum contrast estimators, when θ0 = θ′0. We
reproduce the proof since it is slightly adapted to the case of two argmins.

Proof. Let ε > 0 and B be the union of the open ball with center θ0 and radius ε and the open ball
with center θ′0 and radius ε. Since S is continuous and Bc ⊂ Θ is a compact set, there exists θε ∈ Bc

such that S(θε) = infBc S. Using the assumption, since θε 6= θ0, and θε 6= θ′0

δ := S(θε)− S(θ0) > 0.

Since Sn is uniformly continuous, there exists α > 0 such that

∀θ, θ′ ‖θ − θ′‖ < α⇒ |Sn(θ)− Sn(θ′)| ≤ δ/2.

Moreover Bc is a compact set then there exists a finite set (θi) such that Bc ⊂ ∪Ii=1B(θi, α). Denote
∆n := max0≤i≤I |Sn(θ) − S(θ)|. The assumption ensures that ∆n tends to 0 in probability. Let
θ ∈ Bc. There exists 1 ≤ i ≤ I such that ‖θ − θi‖ < α, and then |Sn(θ)− Sn(θi)| ≤ δ/2. Thus

Sn(θ)− Sn(θ0) = (Sn(θ)− Sn(θi)) + (Sn(θi)− S(θi)) + (S(θi)− S(θ0)) + (S(θ0)− Sn(θ0))

≥ −δ/2−∆n + δ −∆n

using that S(θi)− S(θ0) ≥ S(θε)− S(θ0) = δ. Then

inf
θ∈Bc

Sn(θ)− Sn(θ0) ≥ δ/2− 2∆n.

Now, if ‖θ̂n − θ0‖ ≥ ε and ‖θ̂n − θ′0‖ ≥ ε then θ̂n ∈ Bc and

inf
Θ
Sn = Sn(θ̂n) = inf

Bc
Sn.

In particular infBc Sn ≤ Sn(θ0) so that

P(‖θ̂n − θ0‖ ≥ ε and ‖θ̂n − θ′0‖ ≥ ε) ≤ P(0 ≥ inf
Bc
Sn − Sn(θ0) ≥ δ/2− 2∆n) ≤ P(∆n ≥ δ/4)→ 0

since ∆n tends to 0 in probability.
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6.3 Proof of Theorem 5 (asymptotic normality)

The Taylor’s theorem and the definition of θ̂n give

Ṡn(θ̂n) = Ṡn(θ0) + S̈n(θ∗n)(θ̂n − θ0) = 0,

where θ∗n lies in the line segment with extremities θ0 and θ̂n. Equivalently we have,

S̈n(θ∗n)(θ̂n − θ0) = −Ṡn(θ0).

We recall that

Sn(θ0) =
1

n(n− 1)

∑
k 6=j

4∑
l=−4

Z lk(θ0)Z lj(θ0)

and

Ṡn(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

Ż lk(θ0)Z lj(θ0)

and

S̈n(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

Z̈ lk(θ0)Z lj(θ0) + Ż lk(θ0)Ż lj(θ0)>.

Step 1- Let us prove that
√
nṠn(θ0)

d−→ N (0, V ).

We remind that J l(θ0) = 0. Hence

E(Ṡn(θ0)) = 2
4∑

l=−4

J̇ l(θ0)J l(θ0) = 0.

We can break down Ṡn(θ0) in the following way:

Ṡn(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

(Ż lk(θ0)− J̇ l(θ0) + J̇ l(θ0))Z lj(θ0)

=
4

n(n− 1)

∑
k<j

4∑
l=−4

(Ż lk(θ0)− J̇ l(θ0))Z lj(θ0) +
2

n

n∑
j=1

4∑
l=−4

J̇ l(θ0)Z lj(θ0)

=: An +Bn.

Note that An and Bn are centered variables. Let us show that
√
nAn = oP (1). Note that the

variables Wjk :=
(∑4

l=−4(Ż lk(θ0)− J̇ l(θ0))Z lj(θ0)
)
k<j

are centered and uncorrelated. Then

E(‖An‖2) = E

∥∥∥∥∥∥ 4

n(n− 1)

∑
k<j

Wjk

∥∥∥∥∥∥
2 =

8

n(n− 1)
E‖W12‖2.

Using Lemma 10, there exists C > 0 such that

‖W12‖ ≤
4∑

l=−4

2(1 + |l|)√
2π

1

2π
≤ C
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so that E(‖
√
nAn‖2) ≤ 8C2/(n− 1). Finally, invoking Markov inequality we have that

√
nAn =

oP (1). We can write
√
nBn in the following way:

√
nBn =

2√
n

n∑
k=1

Uk(θ0),

where we set Uk(θ0) :=
∑4

l=−4 J̇
l(θ0)Z lk(θ0). Note that the Uk(θ0)’s are i.i.d and centered. Invoking

the central limit theorem, we have that

1√
n

n∑
k=1

Uk(θ0)
d−→ N (0, V/4),

where V/4 is the covariance matrix of U1(θ0), equal to E(U1(θ0)U1(θ0)>).

Step 2- Let us prove that S̈n(θ∗n)
P−→ A(θ0) where A(θ0) = 2

∑4
l=−4 J̇

l(θ0)J̇ l(θ0)>. We have

‖S̈n(θ∗n)−A(θ0)‖F ≤ ‖S̈n(θ∗n)− S̈n(θ0)‖F + ‖S̈n(θ0)− ES̈n(θ0)‖F + ‖ES̈n(θ0)−A(θ0)‖F .

We get due to the Lipschitz property of S̈n stated in Lemma 12 that

P
(
‖S̈n(θ0)− S̈n(θ∗n)‖F ≥ ε

)
≤ P (K‖θ∗n − θ0‖ ≥ ε)→ 0,

because θ̂n →P θ0. Furthermore, we have

E(S̈n(θ0)) = S̈(θ0) = 2
4∑

l=−4

(J̈ l(θ0) J l(θ0)︸ ︷︷ ︸
=0

+J̇ l(θ0)J̇ l(θ0)>)

= 2
4∑

l=−4

J̇ l(θ0)J̇ l(θ0)> = A(θ0).

Last, let us focus on the term ‖S̈n(θ0)− ES̈n(θ0)‖F . We remind that

S̈n(θ0)− ES̈n(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

(
Z̈ lk(θ0)Z lj(θ0) + Ż lk(θ0)Ż lj(θ0)> − J̇ l(θ0)J̇ l(θ0)>

)
.

From now on, we drop indices l and θ0 to simplify the notation. We center the variables in order to
find uncorrelatedness:

Z̈kZj + ŻkŻ
>
j − J̇ J̇> =

(
Z̈k − J̈

)
Zj︸ ︷︷ ︸

A

+ J̈Zj︸︷︷︸
B

+ (Żk − J̇)(Żj − J̇)>︸ ︷︷ ︸
C

+ J̇(Żj − J̇)>︸ ︷︷ ︸
D

+ (Żk − J̇)(J̇)>︸ ︷︷ ︸
E
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(remind that E(Zj) = J l(θ0) = 0). Then S̈n(θ0)− ES̈n(θ0) = 2
∑4

l=−4(A+B + C +D + E) where

A =
2

n(n− 1)

∑
k<j

(
Z̈k − J̈

)
Zj

B =
1

n

n∑
j=1

J̈Zj

C =
2

n(n− 1)

∑
k<j

(Żk − J̇)(Żj − J̇)>

D =
1

n

n∑
j=1

J̇(Żj − J̇)>

E =
1

n

n∑
k=1

(Żk − J̇)J̇> = D>

Using the weak law of large numbers for uncorrelated centered variables, we obtain that ‖S̈n(θ0)−
ES̈n(θ0)‖F →P 0 which completes the proof of the Theorem.

6.4 Proof of Theorem 6 (nonparametric estimation)

The proof of the oracle inequality is based on the two following lemmas. The conclusion follows,
choosing 2γ = ε/(1 + ε) and λ = γ−1κ(1− 2P )−2 = 2κ(1 + ε−1)(1− 2P )−2.

Lemma 15. Let λ > 0 and L be a finite set of resolution level and define

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n

}
.

Then, for all 0 < γ < 1/2,

(1− 2γ)‖f̂
L̂
− f‖22 ≤ min

L∈L

{
(1 + 2γ)‖f̂L − f‖22 + 2λ

2L+ 1

n

}
+

1

γ

∑
L∈L

(
sup
t∈BL

ν2
n(t)− λγ 2L+ 1

n

)

where BL = {t ∈ CZ,
∑

l∈Z t
2
l = 1, tl = 0 if |l| > L} νn(t) =

∑
l∈Z tl(f̂

?l − f?l).

Proof. We recall that the dot product 〈f, g〉 means 1
2π

∫
f(x)g(x)dx and that ‖.‖2 is the associated

norm. Usual Fourier analysis gives for any L:

‖f̂L − f‖22 = −‖f̂L‖22 + 2(‖f̂L‖22 − 〈f̂L, f〉) + ‖f‖22

= −
L∑

l=−L
|f̂?l|2 + 2

L∑
l=−L

f̂?l(f̂?l − f?l) + ‖f‖22

= −
L∑

l=−L
|f̂?l|2 + 2νn(f̂?L) + ‖f‖22
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where we denote f̂?L the sequence in CZ such that (f̂?L)l = f̂?l if −L ≤ l ≤ L and 0 otherwise.
Now let L be an arbitrary resolution level in L. Using the definition of L̂,

−
L̂∑

l=−L̂

|f̂?l|2 + λ
2L̂+ 1

n
≤ −

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n
.

Thus

‖f̂
L̂
− f‖22 − 2νn(f̂?

L̂
) + λ

2L̂+ 1

n
≤ ‖f̂L − f‖22 − 2νn(f̂?L) + λ

2L+ 1

n

which leads to

‖f̂
L̂
− f‖22 ≤ ‖f̂L − f‖22 + 2νn(f̂?

L̂
− f̂?L)− λ2L̂+ 1

n
+ λ

2L+ 1

n
.

But, denoting ‖.‖` the natural norm of `2(CZ)

2νn(f̂?
L̂
− f̂?L) = 2νn

(
f̂?
L̂
− f̂?L

‖f̂?
L̂
− f̂?L‖`

)
‖f̂?
L̂
− f̂?L‖` ≤ γ‖f̂?L̂ − f̂

?
L‖2` +

1

γ
ν2
n

(
f̂?
L̂
− f̂?L

‖f̂?
L̂
− f̂?L‖`

)

≤ 2γ(‖f̂
L̂
− f‖22 + ‖f − f̂L‖22) +

1

γ
sup

t∈B
L∨L̂

ν2
n(t)

where L ∨ L̂ = max(L, L̂). Thus

‖f̂
L̂
− f‖22(1− 2γ) ≤ ‖f̂L − f‖22(1 + 2γ) +

1

γ
sup

t∈B
L∨L̂

ν2
n(t)− λ2L̂+ 1

n
+ λ

2L+ 1

n

≤ ‖f̂L − f‖22(1 + 2γ) +
1

γ

(
sup

t∈B
L∨L̂

ν2
n(t)− λγ 2L̂+ 2L+ 2

n

)
+ 2λ

2L+ 1

n

≤ ‖f̂L − f‖22(1 + 2γ) +
1

γ

(
sup

t∈B
L∨L̂

ν2
n(t)− λγ 2(L ∨ L̂) + 1

n

)
+ 2λ

2L+ 1

n
.

Lemma 16. Assume that f belongs to the Sobolev ellipsoid W (s,R) with s > 1/2. With the notation
of Lemma 15, if L = {1, . . . , Ln} with Ln →∞ but not larger than a power of n, for all κ ≥ 1/2,

∑
L∈L

E

(
sup
t∈BL

ν2
n(t)− κ

(1− 2P )2

2L+ 1

n

)
≤ C

n
,

where C is a positive constant depending on ‖f‖2, P, θ0, R, s.

Proof. Denote Rl = 1
M l(θ̂)

− 1
M l(θ0)

. First note that

νn(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk

M l(θ̂)
− 2πg?l

M l(θ0)

)
= νn,1(t) + νn,2(t) + νn,3(t)
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where

νn,1(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk − 2πg?l

M l(θ0)

)

νn,2(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk − 2πg?l

)
Rl

νn,3(t) =
1

n

n∑
k=1

∑
l∈Z

tlg
?lRl.

Thus, if κ/3 ≥ κ1 + κ2 + κ3,

E

(
sup
t∈BL

ν2
n(t)− κ

(1− 2P )2

2L+ 1

n

)
≤ 3E

(
sup
t∈BL

ν2
n,1(t)− κ1

(1− 2P )2

2L+ 1

n

)

+ 3E

(
sup
t∈BL

ν2
n,2(t)− κ2

(1− 2P )2

2L+ 1

n

)
+ 3E

(
sup
t∈BL

ν2
n,3(t)− κ3

(1− 2P )2

2L+ 1

n

)
.

Control of νn,2 Note that |Rl| ≤ 2/(1− 2P ), so for t ∈ BL,

ν2
n,2(t) ≤

(
2

1− 2P

L∑
l=−L

|tl(ĝ?l − g?l)|

)2

.

Then

E

(
sup
t∈BL

ν2
n,2(t)

)
≤
(

2

1− 2P

)2 L∑
l=−L

E
∣∣∣ĝ?l − g?l∣∣∣2 ≤ 1

π2(1− 2P )2

2L+ 1

n
.

Denoting κ2 = 1/π2, we obtain

E

(
sup
t∈BL

ν2
n,2(t)− κ2

(1− 2P )2

2L+ 1

n

)
≤ 0.

Control of νn,3 First note that

∣∣∣g?lRl∣∣∣ =

∣∣∣∣∣f?lM l(θ0)−M l(θ̂)

M l(θ̂)

∣∣∣∣∣ ≤ |f?l|
1− 2P

∣∣∣M l(θ0)−M l(θ̂)
∣∣∣ .

Thus, using Schwarz inequality

E

(
sup
t∈BL

ν2
n,3(t)

)
≤

L∑
l=−L

|f?l|2

(1− 2P )2
E
∣∣∣M l(θ0)−M l(θ̂)

∣∣∣2 .
But

|M l(θ0)−M l(θ̂)| ≤ |(p0 − p̂)e−iα0l + p̂(e−iα0l − e−iα̂l) + (1− p0 − 1 + p̂)e−iβ0l + (1− p̂)(e−iβ0l − e−iβ̂l)|

≤ |p0 − p̂|+ |e−iα0l − e−iα̂l|+ |p0 − p̂|+ |e−iβ0l − e−iβ̂l|
≤ 2|p0 − p̂|+ |l||α0 − α̂|+ |l||β0 − β̂| ≤ 2|l|‖θ0 − θ̂‖1
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(note that it is also true for l = 0 sinceM0(θ0) = M0(θ̂) = 1). According to the Theorem 5, there ex-

ists a constantK(θ0) > 0 such that for all n, E(n‖θ̂−θ0‖21) ≤ K(θ0) and then E
∣∣∣M l(θ0)−M l(θ̂)

∣∣∣2 ≤
4K(θ0)l2/n. Finally

E

(
sup
t∈BL

ν2
n,3(t)

)
≤ 4K(θ0)

(1− 2P )2n

L∑
l=−L

l2|f?l|2 =
4K(θ0)

(1− 2P )2n

L∑
l=−L
l 6=0

|l|2−2s|l|2s|f?l|2.

Since in the sum |l|2−2s ≤ max(1, L2−2s) and f ∈W (s,R)

Ln∑
L=1

E

(
sup
t∈BL

ν2
n,3(t)− κ3

(1− 2P )2

2L+ 1

n

)
≤ 2

(1− 2P )2n

Ln∑
L=1

(
2K(θ0)R2 max(1, L2−2s)− κ3L

)
≤ 1

(1− 2P )2n

(
K ′(θ0, R

2, β) max(Ln, L
3−2s
n )− κ3L

2
n

)
≤ 1

(1− 2P )2n
K ′′(θ0, R

2, β, κ3)

for any κ3 > 0, since s > 1/2 and Ln = max(L)→∞.

Control of νn,1
To control νn,1 , we need Talagrand inequality.

Lemma 17. Let X1, . . . , Xn be i.i.d. random variables, and define νn(t) = 1
n

∑n
k=1 ψt(Xk) −

E[ψt(Xk)], for t belonging to a countable class B of real-valued measurable functions. Then, for
δ > 0, there exist three constants cl, l = 1, 2, 3, such that

E

[(
sup
t∈B

(νn (t))2 − c(δ)H2

)
+

]
≤ c1

{
v

n
exp

(
−c2δ

nH2

v

)
(6.5)

+
M2

1

C2(δ)n2
exp

(
−c3C(δ)

√
δ
nH

M1

)}
,

with C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
t∈B
‖ψt‖∞ ≤M1, E

[
sup
t∈B
|νn(ψt)|

]
≤ H, and sup

t∈B
Var (ψt (X1)) ≤ v.

Inequality (6.5) is a classical consequence of Talagrand’s Inequality given in Klein and Rio (2005):
see for example Lemma 5 (page 812) in Lacour (2008). Using density arguments, we can apply it to
the unit sphere of a finite dimensional linear space.

Here νn,1(t) = 1
n

∑n
k=1 ψt(Xk)− E[ψt(Xk)] with

ψt(X) =
1

2π

∑
l∈Z

tl
e−ilX

M l(θ0)
, E(ψt(X)) =

∑
l∈Z

tl
g?l

M l(θ0)

Let us compute M1, H and v.
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• Using Cauchy Schwarz inequality, for t ∈ BL,

|ψt(u)|2 =

∣∣∣∣∣ 1

2π

L∑
l=−L

tl
e−ilu

M l(θ0)

∣∣∣∣∣
2

≤ 1

4π2

L∑
l=−L

|tl|2
L∑

l=−L

∣∣∣∣ e−iluM l(θ0)

∣∣∣∣2 ≤ 1

4π2(1− 2p0)2
(2L+ 1),

thus M1 = 1
2π(1−2p0)

√
2L+ 1.

• Using Cauchy Schwarz inequality, for t ∈ BL,

sup
t∈BL

∣∣∣∣∣ 1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk

M l(θ0)
− E

(
e−ilXk

M l(θ0)

))∣∣∣∣∣
2

≤
L∑

l=−L

∣∣∣∣∣ 1

2πn

n∑
k=1

(
e−ilXk

M l(θ0)
− E

(
e−ilXk

M l(θ0)

))∣∣∣∣∣
2

,

then

E

(
sup
t∈BL

|νn,1(ψt)|2
)
≤

L∑
l=−L

Var

(
1

2πn

n∑
k=1

e−ilXk

M l(θ0)

)
≤

L∑
l=−L

1

4π2n
Var

(
e−ilX1

M l(θ0)

)

≤ 1

4π2n

L∑
l=−L

E
∣∣∣∣ e−ilX1

M l(θ0)

∣∣∣∣2 ≤ 1

4π2(1− 2p0)2

2L+ 1

n
,

thus H2 = 1
4π2(1−2p0)2

2L+1
n .

• It remains to control the variance. If t ∈ BL

Var(ψt(X)) ≤ E

∣∣∣∣∣ 1

2π

L∑
l=−L

tl
e−ilX

M l(θ0)

∣∣∣∣∣
2

=
1

4π2

∑
l,l′

tltl′
E(e−ilXe−il′X)

M l(θ0)M l′(θ)
=

1

2π

∑
l,l′

tltl′
g?(l−l

′)

M l(θ0)M l′(θ0)

Using twice Schwarz inequality

Var(ψt(X)) ≤ 1

2π

√√√√∑
l

∣∣∣∣ tl
M l(θ0)

∣∣∣∣2∑
l

∣∣∣∣∣∑
l′

tl′

M l′(θ0)
g?(l−l′)

∣∣∣∣∣
2

≤ 1

2π(1− 2p0)

√√√√∑
l

∣∣∣∣∣∑
l′

tl′

M l′(θ0)
g?(l−l′)

∣∣∣∣∣
2

≤ 1

2π(1− 2p0)

√√√√∑
l

∑
l′

∣∣∣∣∣ tl′

M l′(θ0)

∣∣∣∣∣
2∑

l′

∣∣g?(l−l′)∣∣2
≤ 1

2π(1− 2p0)

√∑
l

1

|1− 2p0|2
∑
j∈Z
|g?j |2

≤ ‖f‖2
2π(1− 2p0)2

√
2L+ 1,

since
∑

j∈Z
∣∣g?j∣∣2 ≤∑j∈Z

∣∣f?j∣∣2 = ‖f‖22. Thus v = ‖f‖2
2π(1−2p0)2

√
2L+ 1.
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Inequality (6.5) becomes

E

[(
sup
t∈BL

(νn,1 (t))2 − c(δ)

4π2(1− 2p0)2

2L+ 1

n

)
+

]

≤ c1

{
‖f‖2

√
2L+ 1

2π(1− 2p0)2n
exp

(
−c2δ

√
2L+ 1

2π‖f‖2

)
+

2L+ 1

4π2(1− 2p0)2C2(δ)n2
exp

(
−c3C(δ)

√
δn
)}

≤ K

n

{√
2L+ 1 exp

(
−c
√

2L+ 1
)

+
2L+ 1

n
exp

(
−c
√
n
)}

with K and c positive constants depending on ‖f‖2, p0, c1, c2, c3, δ. This ends the control of νn,1
with κ1 = c(δ)

4π2 since

∑
L∈L

{√
2L+ 1e−c

√
2L+1 +

2L+ 1

n
e−c
√
n

}
≤
∞∑
L=1

√
2L+ 1e−c

√
2L+1 + ]Le−c

√
n = O(1).

Choosing κ3 and δ sufficiently small, it is sufficient to take

κ ≥ 3κ1 + 3κ2 + 3κ3 =
9

2π2
+

3δ

π2
+ κ3 =

1

2

to obtain the oracle inequality.
Let us derive the rate of convergence. Since νn(t) =

∑
l∈Z tl(f̂

?l − f?l),

L∑
l=−L

|f̂?l − f?l|2 = νn(f̂?L − f
?
L) ≤ sup

t∈BL
νn(t)‖f̂?L − f

?
L‖`

where we denote f?L the sequence in CZ such that (f?L)l = f?l if −L ≤ l ≤ L and 0 otherwise. Hence
‖f̂?L − f?L‖2` ≤ supt∈BL νn(t)‖f̂?L − f?L‖` so that ‖f̂?L − f?L‖` ≤ supt∈BL νn(t). Then, using Lemma 16

E
L∑

l=−L
|f̂?l − f?l|2 = E‖f̂?L − f

?
L‖2` ≤

κ

(1− 2P )2

2L+ 1

n
+
C

n
≤ C ′ 2L+ 1

n
.

Using Parseval equality,

E‖f − f̂L‖22 =
∑
|l|>L

|f?l|2 + C ′
2L+ 1

n
≤ R2L−2s + C ′

2L+ 1

n
.

Thus, the oracle inequality gives

E‖f̂
L̂
− f‖22 ≤ (1 + 2ε) min

L∈L

{
R2L−2s + (C ′ + 2λ)

2L+ 1

n

}
+
C

n
≤ C ′′n−2s/(2s+1)

choosing L = cn1/(2s+1).
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