Safe screening for sparse regression with the Kullback-Leibler divergence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Safe screening for sparse regression with the Kullback-Leibler divergence

Cassio F. Dantas
Emmanuel Soubies
Cédric Févotte

Résumé

Safe screening rules are powerful tools to accelerate iterative solvers in sparse regression problems. They allow early identification of inactive coordinates (i.e., those not belonging to the support of the solution) which can thus be screened out in the course of iterations. In this paper, we extend the GAP Safe screening rule to the L1-regularized Kullback-Leibler divergence which does not fulfil the regularity assumptions made in previous works. The proposed approach is experimentally validated on synthetic and real count data sets.
Fichier principal
Vignette du fichier
icassp_final.pdf (304.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03147345 , version 1 (19-02-2021)
hal-03147345 , version 2 (21-04-2021)

Identifiants

  • HAL Id : hal-03147345 , version 1

Citer

Cassio F. Dantas, Emmanuel Soubies, Cédric Févotte. Safe screening for sparse regression with the Kullback-Leibler divergence. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2021, Toronto (virtual), Canada. ⟨hal-03147345v1⟩
421 Consultations
393 Téléchargements

Partager

More