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SAFE SCREENING FOR SPARSE REGRESSION WITH
THE KULLBACK-LEIBLER DIVERGENCE

Cássio F. Dantas, Emmanuel Soubies, Cédric Févotte

IRIT, Université de Toulouse, CNRS, Toulouse, France

ABSTRACT

Safe screening rules are powerful tools to accelerate iterative
solvers in sparse regression problems. They allow early iden-
tification of inactive coordinates (i.e., those not belonging to
the support of the solution) which can thus be screened out in
the course of iterations. In this paper, we extend the GAP Safe
screening rule to the `1-regularized Kullback-Leibler diver-
gence which does not fulfil the regularity assumptions made
in previous works. The proposed approach is experimentally
validated on synthetic and real count data sets.

Index Terms— Safe screening, KL divergence, sparsity.

1. INTRODUCTION

The Poisson observation model has been used in a variety
of applications where data correspond to a series of discrete
events with inherently noisy measurements. Examples in-
clude: nuclear medical imaging (e.g., Positron emission to-
mography [1]), astronomy [2] and traffic analysis [3]. The lin-
ear case can be written as: y ∼ Poisson(Ax), where y ∈ Rm+
is the observation vector, x ∈ Rn+ is the signal of interest,
and A ∈ Rm×n+ is the measurement matrix. Poisson intensi-
ties are naturally non-negative (thus the natural non-negativity
constraints).

In this context, recovering the signal of interest x from
the observations y amounts to the resolution of a linear in-
verse problem. The resulting problem is usually ill-posed as
m < n (number of observations smaller than the number of
unknowns) which motivates the introduction of a regulariza-
tion term based on some prior knowledge on the signal x. In
this paper, we are interested in sparsity prior which can be
achieved via a `1-norm regularization. This leads to the fol-
lowing optimization problem:

x? ∈ argmin
x∈Rm+

Pλ(x) := DKL(y | Ax) + λ‖x‖1 (1)

where Pλ(x) denotes the primal objective function, parame-
ter λ > 0 controls the sparsity level of the solution, and the
data-fidelity term is the generalized Kullback-Leibler (KL)
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divergence [4], which also corresponds to the Poisson neg-
ative log-likelihood up to irrelevant terms [5, 6]:

DKL(y | z) =

m∑
i=1

yi log

(
yi

zi + ε

)
− yi + (zi + ε). (2)

The smoothing constant ε ≥ 0 allows to avoid singularities
around zi = 0 and is common practice, see, e.g., [7].

Several algorithms have been proposed in the literature for
tackling problem (1) [4, 7, 8, 9]. In this paper, we propose a
variable elimination technique called safe screening that can
accelerate most of the existing solvers.

Safe screening techniques were originally proposed for
the Lasso problem [10], but have recently been extended to
a wide variety of sparse-regularized problems [11, 12, 13].
Such techniques allow to identify, before and while solving
the problem, coordinates which will not be part of the so-
lution support. Doing so might significantly accelerate the
problem’s resolution. As soon as a coordinate j is identified
as inactive, the corresponding column of the dictionary matrix
aj can be removed once and for all. In such approaches, there
is no risk of false identification, thus the “safe” denomination.

In this paper, we extend an existing screening tech-
nique [12] to the regularized Kullback-Leibler problem (1).
Even though the approach in [12] was proposed within a
generalized linear model framework, it cannot be directly
applied to our problem of interest, since the Kullback-Leibler
function does not fulfill the regularity hypothesis in [12].

In Section 2, we go through the main technical ingredi-
ents on deriving safe screening rules for problem (1). Then,
the proposed algorithm is described in Section 3 and experi-
mental results are given in Section 4.

Notations [n] = {1, . . . , n} is the set of n first integers and
1 is a vector of ones (with size inferred from context). θI ∈
R|I| denotes the restriction of θ ∈ Rm to its components
indexed by the elements of I ⊆ [m]. I{ denotes the com-
plement of set I. Given two vectors z ∈ Rm and y ∈ Rm,
y/z is the entry-wise division. We denote ∇DKL(y | z) =
∇zDKL(y | z) the gradient w.r.t. the second variable z∈Rm+
and B(c, r) a closed `2-ball in Rm with center c and radius r.
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2. SAFE SCREENING FOR THE KL-`1 PROBLEM

2.1. The Dual Problem

Theorem 1. The dual formulation of the optimization prob-
lem defined in (1) is given by:

θ? = argmax
θ∈FA

Dλ(θ) :=

m∑
i=1

yi log(1 + λθi)− ελθi, (3)

where FA = {θ ∈ Rm | λθ ≥ −1, ATθ ≤ 1} is the dual
feasible set and “ ≤ ” is defined component-wisely. More-
over, first-order optimality conditions for a pair of solutions
(x?,θ?) are given by:

λθ? =
y

Ax? + ε
− 1 (4)

aT
j θ

? =

{
1, if x?j > 0,
% ≤ 1, if x?j = 0.

(5)

Proof. The dual function Dλ(θ) is given by the Fenchel
conjugate of the data-fidelity term DKL [12, 14]. The con-
straint set is given by the Fenchel conjugate of Ω(x) =
‖x‖1 + 1Rm+ (x), which is calculated in [13] for the nonnega-
tive Lasso. For compactness, we integrate to the feasible set
the domain of the dual function, given by dom(Dλ) = {θ ∈
Rm | θ ≥ −1/λ}.
Optimality conditions (4) and (5) are given by [12]:

λθ? = −∇DKL(y | Ax?)

ATθ? ∈ ∂‖x‖1 + ∂1Rm+ (x)

Calculation details for the latter equation are given in [13].
Finally, it is worth mentioning that, even for ε = 0, (4) is well-
defined as [Ax?]i= 0 =⇒ yi= 0, in which case we use the
convention that 0/0 = 0. Indeed, when ε = 0, if yi 6= 0 and
[Ax]i = 0 for any i ∈ [m], then DKL(y | Ax) = +∞ which
cannot be optimal and, hence, yi 6= 0 =⇒ [Ax?]i 6= 0 as
desired.

A direct consequence of Theorem 1 is that, given the dual
solution θ?,

aT
j θ

? < 1 =⇒ x?j = 0, (6)

for any primal solution x?. In other words, the support of
primal solutions x? is characterized by the knowledge of the
dual solution. The promise of safe screening is then to ex-
ploit this property in order to reduce the size of the primal
problem (and accelerate its resolution) by screening out the
coordinates that are inactive (x?j = 0).

2.2. Safe Sphere

Because the dual solution θ? is not known in advance, the
condition (6) cannot be used in practice. However, we can
derive a more restrictive—yet practical—sufficient condition
for eliminating coordinates of the primal problem.

Proposition 1 (KL-`1 Safe Screening Rule). Let I = {i ∈
[m] : yi = 0} and S = {θ ∈ Rm | θI = −1/λ}. Let θ ∈ S
and r > 0 be such that θ? ∈ B(θ, r). Then,

aT
j θ + r‖[aj ]I‖2 < 1 =⇒ x?j = 0. (7)

Proof. First of all, one can see from (4) that the dual solu-
tion takes the value θ?i = −1/λ for all coordinates i ∈ I.
Hence, by the definition of S, we have θ? ∈ S and thus
θ? ∈ B(θ, r) ∩ S . It follows from (5) that

sup
ξ∈B(θ,r)∩S

aT
j ξ < 1 =⇒ aT

j θ
? < 1 =⇒ x?j = 0.

Finally, we have

sup
ξ∈B(θ,r)∩S

aT
j ξ = aT

j θ + r sup
u∈B(0,1),uI=0

aT
j u

= aT
j θ + r‖[aj ]I‖2

which completes the proof.

Hence, if one can find a ball B(θ, r) containing θ? (we
say that B(θ, r) is a safe region), Proposition 1 allows to
safely identify inactive variables of x?. This is possible when
the dual function is α-strongly concave [12]. Indeed, given
a primal-dual feasible pair (x,θ) ∈ Rn+ × FA, the authors
in [12] have shown that B(θ, r) with r =

√
2 Gapλ(x,θ)/α,

where Gapλ(x,θ) := Pλ(x) − Dλ(θ) denotes the duality
gap, is a safe region (GAP Safe Sphere). Unfortunately, for
the KL divergence, the dual objective functionDλ in (3) is not
globally strongly concave. However, Dλ is locally strongly
concave and we shall show that this is sufficient to derive a
safe region B(θ, r).

Theorem 2 (KL-`1 GAP Safe Sphere). Let I and S be de-
fined as in Proposition 1.Let (x,θ) ∈ Rn+ × (FA ∩ S) be
a primal-dual feasible pair, and assume that rank(A) =
min(m,n). Then, for

r =

√
2 Gapλ(x,θ)

ᾱ
(8)

ᾱ = λ2 min
i∈I{

yi

(1 + max(‖A‖1, λ)‖a†i‖1)2
, (9)

we have θ? ∈ B(θ, r) (i.e., B(θ, r) is a safe region). In (9)
a†i denotes the i-th column of A† ∈ Rn×m, the right pseudo-
inverse of A such that AA† = Im, and ‖A‖1 is the maximum
absolute column sum of the matrix A.

Proof. Because by definition and assumption we have both
θ? ∈ FA ∩ S and θ ∈ FA ∩ S , it is sufficient to have Dλ

ᾱ-strongly concave on FA ∩ S to complete the proof by
following the same steps as in [12][Theorem 2]. Hence,
let us show that Dλ is ᾱ-strongly concave in FA ∩ S.
Dλ(θ) is coordinate-separable with diagonal Hessian given



by ∇2Dλ(θ) = Diag
([
−λ2 yi

(1+λθi)2

]
i∈[m]

)
. The i-th

eigenvalue σi (i.e., the i-th diagonal entry) depends only on
the i-th coordinate θi and may tend to zero as |θi| → +∞.
However, when we restrict ourselves to the dual feasible set,
FA = {θ | ATθ ≤ 1,θ ≥ −1/λ}, |θi| can be bounded as
follows (provided that rank(A) = min(m,n))

|θi| = |
[
(AA†)Tθ

]
i
| = |〈a†i ,A

Tθ〉| ≤ ‖a†i‖1‖A
Tθ‖∞.

The definition of FA implies that −AT1/λ ≤ ATθ ≤ 1, or
equivalently ‖ATθ‖∞ ≤ max (‖A‖1/λ, 1) . Therefore:

(1 + λθi)
2 ≤ (1 + max(‖A‖1, λ)‖a†i‖1)2

which leads to a bound on the i-th eigenvalue. Finally, by re-
stricting ourselves to the set S = {θ ∈ Rm | θI = −1/λ},
all coordinates i ∈ I are fixed and the corresponding eigen-
values can be ignored. Hence,

max
i∈I{

σi ≤ −λ2 min
i∈I{

yi

(1 + max(‖A‖1, λ)‖a†i‖1)2
:= −ᾱ

completes the proof.

Remark 1. To derive the safe sphere in Theorem 2, we ex-
ploit the local strong-concavity property of the dual function
Dλ over FA ∩ S . The restriction to the set S ⊆ Rm−|I|
is essential to obtain this strong-concavity property as Dλ is
not strongly-concave on FA. More generally, this result is an
example of how prior knowledge on the dual solution can be
leveraged to improve screening strategies.

3. PROPOSED ALGORITHM

Equipped with the screening tools derived in Section 2, we
can deploy the so-called dynamic screening approach [11] to
accelerate iterative solvers for problem (1). The idea is to per-
form screening tests repeatedly over the iterations of the un-
derlying solver. As the algorithm converges, smaller safe re-
gions can be defined, leading to a growing number of screened
coordinates. This strategy is described in Algorithm 1 for a
generic iterative solver for (1) (see Section 3.1) whose update
step is denoted

{x,η} ← PrimalUpdate(x,A,y, λ,η). (10)

In (10), x stands for the current estimate of the primal vari-
able and η is a list of auxiliary variables (e.g., the gradient
step-size, and possibly a few previous primal estimates). The
stopping condition is given by a threshold εgap on the duality
gap. Finally, in order to exploit the safe region derived in The-
orem 2 for screening, it is needed to compute a dual feasible
point θ ∈ FA ∩ S from the current primal estimate x (line 5
in Algorithm 1). This is discussed in Section 3.2.

For simplicity, in Algorithm 1 screening is performed af-
ter every iteration of the solver, but it can actually be per-
formed at any chosen moment. For instance, it can be per-
formed on regular intervals between a certain number of iter-
ations of the solver. Finally, note the nested characteristic of
the preserved set (line 7) as the screened coordinates are no
longer tested on the ensuing iterations.

Algorithm 1 x̂ = ScreeningSolverKL(A,y, λ,x, εgap)

1: Initialize: A = [n], η according to the solver
2: repeat
3: {xA,η} ← PrimalUpdate(xA,AA,y, λ,η)
4: —– Dynamic Screening —–
5: θ ← Θ (x) . Dual update (Proposition 2)

6: r ←
√

2 Gapλ(x,θ)
ᾱ . Safe radius (Theorem 2)

7: A ← {j∈A | aT
j θ + r‖[aj ]I‖2 ≥ 1}

8: xA{ ← 0
9: until Gapλ(x,θ) < εgap

As screening progressively reduces the number of co-
ordinates in play, the solver iteration cost decreases pro-
portionally. The screening test itself does not represent
a considerable overhead since it reuses the calculations
already performed by the solver update. For instance,
Θ (x) given in Proposition 2 requires the computation of
ρ(x) = ∇DKL(y | Ax) and ATρ(x), which are calculated
by basically any first-order solver. Similarly, the duality gap
can be reused as the stopping criterion.

3.1. Primal Update

Basically any standard iterative solver for problem (1) can be
used in Algorithm 1. In the present paper, we focus on the
following ones:

1. Multiplicative update (MU) [1, 2, 4, 15]
2. Proximal gradient descent (SPIRAL [7])
3. Coordinate descent (CoD) [8] (or [16])

3.2. Dual Update

The sphere center in Theorem 2 is given by a dual feasible
point θ ∈ FA ∩ S. Apart from primal-dual approaches such
as [17, 14], most popular solvers for problem (1) only provide
a primal solution estimate x at each iteration [4, 7, 8]. Hence,
in this scenario, one needs to compute θ ∈ FA ∩ S from x.
This can be achieved at a low computational cost following
Proposition 2 which is inspired from [11, 12].

Proposition 2. Let x ∈ Rn+ be a primal feasible point and set
ρ(x) = y/(Ax + ε)− 1. Then Θ : Rn+ → Rm+ defined by

[Θ(x)]i =

{
[ρ(x)]i

λmax(1,max(ATρ(x)/λ))
if i ∈ I{

− 1
λ if i ∈ I

(11)



is such that Θ(x) ∈ FA∩S. Moreover, we have Θ(x)→ θ?

as x→ x?.

Proof. Clearly, by definition of Θ, we have Θ(x) ∈ S . It
remains to show that Θ(x) ∈ FA. Because A ∈ Rm×n+ ,
x ∈ Rn+, and y ∈ Rm+ , we have that ρ/λ ≥ −1/λ. Combin-
ing this with max

(
1,max

(
ATρ(x)/λ

))
≥ 1 and (11), we

obtain that ρ(x)/λ
max(1,max(ATρ(x)/λ))

≥ Θ(x) ≥ −1/λ. Multi-
plying the left and right hand side of the first inequality by
AT, we obtain ATΘ(x)≤1 which shows that Θ(x) ∈ FA.
Moreover, by continuity of ρ we obtain

ρ(x) →
x→x?

ρ(x?) =
(4)
λθ?

which, together with (5) and (11) proves that Θ(x) → θ? as
x→ x?.

4. EXPERIMENTS

In this section, we evaluate the performance of Algorithm 1
coupled with the three standard solvers listed in Section 3.1
for the resolution of (1) with ε = 10−6. Note that values
for the hyperparameter λ are reported relatively to λmax =
max

(
AT(y − ε)

)
/ε (the bound above which x? = 0).

4.1. A Synthetic Toy Example

We generate synthetic data that follow the Poisson noise
model y = Poisson(Ax) with dimensions m = 10, n = 20.
The entries of A are drawn i.i.d. with half-normal distribution
(i.e., entry aij = |bij | with bij ∼ N (0, 1)), the columns aj
are then rescaled to unit-norm and x is a 2-sparse vector with
uniformly-distributed nonzero entries.

Figure 1 illustrates a typical behavior of a MU solver
paired with the proposed screening strategy. Screening intro-
duces actual zeroes in the solution estimate, something that
would not be possible with a regular MU solver, which can
only shrink the coordinates without ever making them zero.

4.2. Real Datasets

We now consider real count datasets: 20-Newsgroups [18],
NIPS papers [19] (word counts) and TasteProfile [20] (song
listening counts). The observation vector y is a randomly se-
lected column of the count data matrix and A is formed by
the remaining data, akin to archetypal analysis.

Figure 2 shows an instance of the CoD solver’s conver-
gence over time with and without screening. Note that screen-
ing progressively reduces the iteration cost which leads to a
considerable acceleration in convergence time.

Finally, Table 1 summarizes speedup results for the tested
datasets with the three considered solvers in different reg-
ularization regimes and for different convergence criteria.
Speedups from 1.5 to 8 times are observed, with larger gains
obtained for smaller convergence tolerances (εgap).
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Fig. 1: Screening behavior with MU solver. Problem param-
eters: m= 10, n= 20, λ= 10−3λmax. Left: each line is a
coordinate xj , the line stops when the coordinate is screened.
Top: rows are coordinates which turn white when screened.
Bottom: Total number of screened coordinates per iteration.
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Fig. 2: Convergence of CoD solver in CPU time. 20 News-
groups data, λ = 10−2λmax.

5. CONCLUSION

A dynamic screening approach has been proposed to ac-
celerate existing iterative solvers for the sparse-regularized
Kullback-Leibler minimization problem. In particular, we
have shown that the local strong-concavity of the associated
dual function is sufficient to derive a safe screening rule. This
idea could be extended for other data-fidelity terms where
the dual objective function is not globally strongly concave,
pushing the limits of existing safe screening rules. The pro-
posed approach provided consistent speedups in a wide range
of tested scenarios.

λ/λmax 10−1 10−3

εgap 10−5 10−7 10−5 10−7

SPIRAL 1.44 1.59 1.60 1.78
20 Newsgr. CoD 2.44 3.42 2.46 3.22

MU 4.80 7.72 4.49 7.28

SPIRAL 2.77 3.21 2.26 2.53
NIPS papers CoD 4.19 5.35 4.12 5.06

MU 6.71 8.88 5.74 7.31
SPIRAL 2.54 3.00 2.82 3.21

TasteProfile CoD 1.75 2.20 2.44 4.22
MU 2.81 4.11 2.94 4.35

Table 1: Average speedups (time without/with screening).
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