An Elastica-driven Digital Curve Evolution Model for Image Segmentation - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2021

An Elastica-driven Digital Curve Evolution Model for Image Segmentation

Résumé

Geometric priors have been shown to be useful in image segmentation to regularize results. For example, the classical Mumford-Shah functional uses region perimeter as prior. This has inspired much research in the last few decades, with classical approaches like the Rudin-Osher-Fatemi and most graph-cut formulations, which all use a weighted or binary perimeter prior. It has been observed that this prior is not suitable in many applications, for example for segmenting thin objects or some textures, which may have high perimeter/surface ratio. Mumford observed that an interesting prior for natural objects is the Euler Elastical model, which involves the squared curvature. In other areas of science, researchers have noticed that some physical binarization processes, like emulsion unmixing can be well-approximated by curvature-related flow like the Willmore flow. However, curvature-related flows are not easy to compute because curvature is difficult to estimate accurately, and the underlying optimisation processes are not convex. In this article, we propose to formulate a digital flow that approximates an Elastica-related flow using a multigrid-convergent curvature estimator, within a discrete variational framework. We also present an application of this model as a post-processing step to a segmentation framework.
Fichier principal
Vignette du fichier
Antunes_etal_Digital_Elastica.pdf (8.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)
Commentaire Ce fichier est produit avec le style de l'éditeur mais ne provient pas de l'éditeur. C'est facile de le voir il n'y a aucune indication de page, numéro ou volume.

Dates et versions

hal-03144926 , version 1 (19-02-2021)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Daniel Antunes, Jacques-Olivier Lachaud, Hugues Talbot. An Elastica-driven Digital Curve Evolution Model for Image Segmentation. Journal of Mathematical Imaging and Vision, 2021, 63 (1), pp.1-17. ⟨10.1007/s10851-020-00983-4⟩. ⟨hal-03144926⟩
139 Consultations
124 Téléchargements

Altmetric

Partager

More