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Abstract Geometric priors have been shown to be useful in image segmenta-
tion to regularize results. For example, the classical Mumford-Shah functional
uses region perimeter as prior. This has inspired much research in the last
few decades, with classical approaches like the Rudin-Osher-Fatemi and most
graph-cut formulations, which all use a weighted or binary perimeter prior.
It has been observed that this prior is not suitable in many applications,
for example for segmenting thin objects or some textures, which may have
high perimeter/surface ratio. Mumford observed that an interesting prior for
natural objects is the Euler Elastical model, which involves the squared cur-
vature. In other areas of science, researchers have noticed that some physical
binarization processes, like emulsion unmixing can be well-approximated by
curvature-related flow like the Willmore flow. However, curvature-related flows
are not easy to compute because curvature is difficult to estimate accurately,
and the underlying optimisation processes are not convex. In this article, we
propose to formulate a digital flow that approximates an Elastica-related flow
using a multigrid-convergent curvature estimator, within a discrete variational
framework. We also present an application of this model as a post-processing
step to a segmentation framework.
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1 Introduction

Geometric quantities are particularly useful as regularizers in low-level image
analysis, especially when little prior information is known about the shape
of interest. Length penalization is a well-behaved, general purpose regularizer
and many models in the literature make use of it, from active contours [8]
to level-set formulations [26,27]. Discrete graph-based variational models have
been particularly succesful to incorporate length penalization as a penalizer,
while keeping the ability to extract a global optimum [5,2].

However length regularization shows limitations when segmenting small or
thin and elongated objects, as it tends to shrink solutions or yields discon-
nected solutions. Such drawbacks can be problematic in image segmentation,
image restoration or image inpainting. It is thus rather natural to consider
curvature (especially squared curvature) as a potential regularizer. Energies
involving both length and squared curvature are often called the Elastica model
(that dates back to Euler). The Willmore energy is its n-dimensional exten-
sion. These were brought to attention in computer vision by Mumford [31].
A similar concept is also present in the second-order regularizer of the orig-
inal snake model [20].Indeed, an explicit curvature term was often employed
in early level-set methods, like [26,27,3] for segmentation or inpainting. How-
ever, Casselles et al. in [8] observed that these terms as employed were not
geometric, in the sense that they depend on the discretization parameters.

1.1 Existing works

The use of curvature for surface regularization in the case of the Willmore
energy was studied in [4]. Although results look promising, authors used an
inexact linearized version of the square curvature at every step.

One of the first successful uses of geometric, squared curvature in image
processing is the inpainting algorithm described in [30], where authors evaluate
the absolute curvature along the level lines of a simply-connected image to
reconstruct its occluded parts. The non-intersection property of level lines
induces the construction of an efficient dynamic programming algorithm. The
curvature energy is nevertheless only coarsely approximated. We may quote [9]
as another geometric inpainting method involving Elastica, which is optimized
with level-sets.

In image segmentation, Zehiry and Grady have shown that injecting curva-
ture as a regularizer can help recover thin and elongated objects [15]. Similarly
Schoenemann et al. [38] have considered the Elastica energy in their ratio-
based image segmentation approach. In [39], Schoenemann et al. extend ratio-
cut approaches to segmentation with a curvature term. Their global optimiza-
tion framework shows the considerable advantages of using such regularizer
in common binary image segmentation tasks. However the time complexity of
their algorithm is prohibitive, even if curvature is again coarsely approximated.
In a more recent work, Lim et al. propose an edge-weighted Willmore-like flow
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to segment vertebra [25] using a level-set formulation. They observe improved
results compared to [8] and other perimeter-based priors, but observe that a
shape prior and a close-enough initialization must also be provided to achieve
good results.

In fact, it is still a very challenging task to efficiently handle curvature in the
context of image segmentation. State-of-art methods are in practice difficult to
optimize and do not scale easily [15,38,40,32]. In order to achieve reasonable
running times, such approaches make use of coarse curvature estimations for
which the approximation error is often unknown. Improving the quality of the
curvature estimator has an important impact on the accuracy of the results,
but is computationally too costly in these methods.

Segmentation methods using Elastica or Willmore energies can be formu-
lated via the computation of the corresponding flow, i.e. following its gradient.
Well-founded level-set methods involving Willmore energy [14] have been used
in medical image segmentation [25]. Another level-set formulation similar to
the Chan-Vese model was proposed in [42]. Willmore flow can also be carried
out by phase-field models (see [7]) but they are less suited to image segmenta-
tion since interfaces are blurred in such models. Threshold dynamics can also
be considered for such energies [18] and has been proposed for image desocclu-
sion [17]. However, flow-based methods will always deliver a local minimum,
which heavily depend on initialization for good results. A similar approach is
to formulate the Elastica as a regularization in a variational framework and
use operator splitting to optimize it. Tai et al. [41] and more recently Deng et
al. [13] have proposed this approach, which is well-suited to inverse problem
solving. The problem remains non-convex and the nature of the converged
iterates are not studied, i.e. how close they are to a global optimum.

In contrast, researchers have sought convex relaxation of curvature-related
formulation. In [19], Goldluecke and Cremers introduce the Total Curvature,
based on the Menger-Melnikov curvature of a measure. The formulation is
non-convex but can be relaxed into a well-correlated but non-tight convex
one. The relaxed formulation can be used to solve inverse problems includ-
ing segmentation. However computing a solution is still expensive, requiring
signifiant parallelisation efforts with a GPU to achieve acceptable computing
times. In [6], Bredies et al. study a convex approximation of the Elastica en-
ergy, using a lifting scheme. Thanks to the lifting, it is not restricted to binary
sets. It shows promising results and can be used for image restoration in addi-
tion to inpainting and segmentation. The scheme is however neither tight nor
exact, and required 4 dimensions for a 2D approximation. In addition, it does
not carry over to nD. It also remains computationally expensive.

Discrete approaches have been used to tackle the Elastica difficulties. As
noted before, [38] have linearized a mesh-based approach, which was expanded
upon by [40], while [15] have used a binary solver for a non-submodular ap-
proach on a regular square grid of pixels, which was expanded in [16]. In [32]
, a specific solver is developed to yield a better solution to an extension of the
formulation in [15].
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1.2 Motivation

In spite of the multiplicity of existing approaches, it seems none is currently
completely satisfactory. While the sought solution is expected to be very
smooth based on geometrical expectations, the mathematical properties of
the related operators make this smoothness elusive. Non-convexity and the
presence of high-order terms make Elastica difficult to optimize and to approx-
imate, let alone compute efficiently. The computed solutions in the literature
are rarely evaluated, and the complexity of the proposed solution is often high.

Consequently, we are interested in studying purely discrete variational seg-
mentation models involving an Elastica energy. Recently, new estimators of
curvature along digital contours have been proposed [36,11,37] with the de-
sirable multigrid convergence property. This motivates us to propose models
in which they can be used successfully.

In this paper, we propose to investigate the use of the digital integral invari-
ant curvature estimator [11] in a discrete variational segmentation framework.
More precisely, we show how to incorporate it in a digital flow minimizing its
squared curvature. This model is expressible as a discrete combinatorial opti-
mization model, which we solve using a classical variant of QPBO algorithm
[35]. Our solution does not compute a global solution to the whole domain
but a global solution to a band surrounding a given shape. Our approach thus
leads to a digital flow similar to continuous Elastica, as shown by our exper-
iments. We present an application of this model as a post-processing step in
a segmentation framework, and demonstrate how it can improve standard re-
sults. This paper is an extended version of a previous work that appeared in
[1]. We have included a deeper discussion on our optimization method and we
present a more thorough comparison of our segmentation method with two
other related works. Moreover, we have included a new local combinatorial
optimization approach for elastica minimization, which show that our discrete
model is well-founded. Finally, the code produced in this paper is freely avail-
able on github.1

1.3 Outline

Section 2 reviews the concept of multigrid convergence and highlights its im-
portance for the definition of digital estimators. We describe two convergent
estimators used in this paper, one that approaches the length of elementary
discrete contour elements, and the other that approaches the curvature of a
discrete contour. They are used in the optimization model and in the definition
of the digital elastica. Section 3 describes a local combinatorial optimization
model suitable for several curvature estimators, that presents interesting re-
sults but is too costly in practice. Section 4 describes the proposed Elastica-
driven curvature evolution model along with several illustrations of digital
flows. Section 5 explains how to use this evolution model as a post-processing

1 https://www.github.com/danoan/BTools
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step in an image segmentation framework and compares it to two related ap-
proaches. We conclude and draw some perspectives to this work in Section 6.

2 Multigrid convergent estimators

Our objective is to delineate shapes within digital images with some priors re-
lated to continuous geometry. The goal of this section is to introduce the con-
cept of multigrid convergence and its potential when analyzing digital images
with variational models involving geometric quantities, with the constraint
that only digitized shapes are observed.

A digital shape is the result of some quantization process over an object X
lying in some continuous space of dimension 2 (here). For example, the Gauss
digitization of a continuous subset X of the Euclidean plane R2 with grid step
h > 0 is defined as

Dh(X) = X ∩ (hZ)2.

Given a shape X and its digitization Dh(X), a digital estimator û for
some geometric quantity u is intended to compute u(X) by using only the
digitization. This problem is not well-posed, as the same digital object could
be the digitization of infinitely many objects very different from X. Therefore,
a characterization of what constitutes a good estimator is necessary.

Let u be some geometric quantity of X (e.g. tangent, curvature). We wish
to devise a digital estimator û for u. It is reasonable to state that û is a good
estimator if û(Dh(X)) converges to u(X) as we refine our grid. For example,
counting pixels is a convergent estimator for area (with a rescale of h2); but
counting boundary pixels (with a rescale of h) is not a convergent estimator
for perimeter. Multigrid convergence is the mathematical tool that makes this
definition precise. Given any subset Z of (hZ)2, we can represent it as a union
of axis-aligned squares with edge length h centered on the point of Z. The
topological boundary of this union of cubes is called h-frontier of Z. When
Z = Dh(X), we call it h-boundary of X and denote it by ∂hX.

Definition 1 (Multigrid convergence for local geometric quantites)
A local discrete geometric estimator û of some geometric quantity u is (uni-
formly) multigrid convergent for the family X if and only if, for any X ∈ X,
there exists a grid step hX > 0 such that the estimate û(Dh(X), x̂, h) is defined
for all x̂ ∈ ∂hX with 0 < h < hX , and for any x ∈ ∂X,

∀x̂ ∈ ∂hX with ‖x̂− x‖∞ ≤ h, ‖û(Dh(X), x̂, h)− u(X,x)‖ ≤ τX(h),

where τX : R+ \ {0} → R+ has null limit at 0. This function defines the speed
of convergence of û towards u for X.

For a global geometric quantity (e.g. perimeter, area, volume), the defini-
tion remains the same, except that the mapping between ∂X and ∂hX is no
longer necessary.
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Multigrid convergent estimators provide a quality guarantee and should be
preferred over non-multigrid convergent ones. In the next section, we describe
two estimators that are important for our purpose.

2.1 Tangent and Perimeter Estimators

The literature presents several perimeter estimators that are multigrid conver-
gent (see [10,12] for a review), but in order to define the digital Elastica we
need a local estimation of length and we wish that integration over these local
length elements gives a multigrid convergent estimator for the perimeter.

Definition 2 (Elementary Length) Let a digital curve C be represented
as a sequence of grid vertices in a grid cell representation of digital objects (in
a grid with step h). Further, let v̂ be a multigrid convergent estimator for the
unit tangent vector. The elementary length ŝ(e) at some oriented grid edge
e ∈ C is defined as

ŝ(e) = h v̂(e) · e.

The integration of the elementary length along the digital curve is a multi-
grid convergent estimator for perimeter if one uses the λ-MST [24] tangent
estimator (see [23]).

2.2 Integral Invariant Curvature Estimator

Generally speaking, an invariant is a function whose value is unaffected by the
action of some group on the elements of the domain. Perimeter and curvature
are examples of invariants for shapes on R2 with respect to the euclidean group
of rigid transformations. Definition of integral area invariant and its link with
curvature is proven in [28].

Definition 3 (Integral area invariant) Let X ⊂ R2 and Br(p) the ball of
radius r centered at point p. Further, let 1X(·) be the characteristic function
of X. The integral area invariant σX,r(·) is defined as

∀p ∈ ∂X, σX,r(p) =

∫
Br(p)

1X(x)dx.

The value σX,r(p) is the area of the intersection of the ball Br(p) with shape
X. By approaching the shape at point p ∈ X, one can rewrite the intersection
area σX,r(p) in the form of the Taylor expansion [33]:

σX,r(p) =
π

2
r2 − κ(X, p)

3
r3 +O(r4),

where κ(X, p) is the curvature of X at point p. By isolating κ we can define
a curvature estimator
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κ̃(p) :=
3

r3

(
πr2

2
− σX,r(p)

)
, (1)

Such an approximation is convenient as one can simply devise a multigrid
convergent estimator for the area.

Definition 4 Given a digital shape D ⊂ (hZ)2, the area estimatir Ârea(D,h)
is defined as

Ârea(D,h) := h2Card (D) . (2)

It is well known that this area estimator is multigrid convergent (e.g. see [21]).
In [11], the authors combine the approximation(1) and digital estimator (2)
to define a multigrid convergent estimator for the curvature.

Definition 5 (Integral Invariant Curvature Estimator) Let D ⊂ (hZ)2

a digital shape. The integral invariant curvature estimator is defined as

κ̂r(D,x, h) :=
3

r3

(
πr2

2
− Ârea (Br(x) ∩D,h)

)
.

This estimator is multigrid convergent with speed O(h
1
3 ) for radii chosen

as r = Θ(h
1
3 ). This estimator is also robust to noise and can be extended to

estimate the mean curvature of three dimensional shapes.

2.3 Elastica energy estimator

In the remaining of this article, we are considering in the minimization of the
Elastica energy. Given a Euclidean shape X with smooth enough boundary,
the Elastica is defined as

E(X) =

∫
∂X

(α+ βκ2)ds, for α ≥ 0, β ≥ 0. (3)

The digital version of Elastica energy approaching the continuous Elastica
energy is defined as follows (it uses multigrid convergent estimators):

Ê(Dh(X)) =
∑

e∈∂Dh(X)

ŝ(e)
(
α+ βκ̂2r(Dh(X), ė, h)

)
, (4)

where ė denotes the center of the edge e. In the expression above, we will
substitute an arbitrary subset Z of Z2 to Dh(X) since the continuous shape
X is unknown. In the following we omit the grid step h to simplify expressions
(or, putting it differently, we assume that the shape of interest is rescaled by
1/h and we set h = 1).
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3 Local combinatorial optimization

The objectives of this section is to show both the potential of minimizing a
purely digital Elastica energy but also to underline the difficulties of using it
in a global combinatorial optimization framework.

Given a digital shape S(0) we describe a process that generates a sequence
S(i) of shapes with non-increasing Elastica energy. The idea is to define a
neighborhood of shapes N (i) to the shape S(i) and choose the element of N (i)

with lowest energy. The process is suited for the integral invariant estimator
but also for other curvature estimators, for example, MDCA [36]. As a mat-
ter of fact, our experiments have shown that either estimators induce similar
results.

Let S be a 2-dimensional digital shape. We adopt the cellular-grid model
to represent S, i.e., pixels and its lower dimensional counterparts, linels and
pointels, are part of S. In particular, we denote by ∂S the topological boundary
of S, i.e., the connected sequence of linels such that for each linel we have one
of its incident pixels in S and the other not in S.

Let dS : Ω → R be the Euclidean distance transformation with respect
to shape S. The value dS(x) gives the Euclidean distance between x and the
closest pixel in S.

Definition 6 (m-Ring Set) Given a digital shape S ∈ Ω, its distance trans-
formation dS and natural numbers m > 0, the m-ring set of S is defined
as

Rm(S) := R−m(S) ∪ R+
m(S)

:= {x ∈ Ω | m− 1 < dS(x) ≤ m} ∪ {x ∈ Ω | m− 1 < dS(x) ≤ m} .

Consider the following set of neighbor candidates to S:

U(S) = {D |D ⊂ R1(S) ∪ S and D is connected}.

Such set can be extremely large and its complete exhaustion is prohibitively
expensive. Instead, we explore a subset of it with the help of n-glued curves.

An oriented closed curve C is a closed connected sequence of linels with a
well-defined interior. A segment of C is a connected subsequence c ∈ C of its
linels.

Definition 7 (Glued Curve) Given closed curves C1, C2 agreeing with some
orientation q, a glued curve is a closed curve (c1, `1, c2, `2) with orientation q
and c1 ∈ C1, c2 ∈ C2. The linels `1, `2 are called junction linels.

Definition 8 (n-Glued Curve Set) Given closed curves C1, C2 with same
orientation, its set of n-glued curves is defined as

Gn(C1, C2) = {(c1, `1, c2, `2) | |c2| = n},
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(a) (b)

Fig. 1: The blue pixels in figure (a) illustrates a 2-ring set, while the green
pixels its inner-pixel boundary. In figure (b) we highlight an element of set
G11(C1, C2). The curve segments of C1 and C2 are colored in red and green,
while the junction linels in blue.

Let SO = (S ∪ R+
1 (S)) and SI = (S \ R−1 (S)), the neighborhood set to

shape S is defined as

N (S,N) =
⋃

1≤n≤N

int
(
Gn(∂SO, ∂S)

)
∪ int

(
Gn(∂S, ∂SI)

)
,

where int(C) is the interior of the shape bounded by the close oriented
curve C. Algorithm 11 describes the local combinatorial process and Figure 2
presents the digital curve evolution when executing this algorithm for two
different shapes with N = 20.

input : A digital set S; the maximum length of glued curves N ; the maximum
number of iterations maxIt; and a stop condition tolerance

1 delta ←− tolerance +1;
2 while i < maxIt and delta > tolerance do

3 for X ∈ N (S(i), N) do

4 if Ê(X) < Ê(X?) then
5 X? ←− X
6 end

7 end
8 i ←− i +1;

9 S(i) ←− X?;

10 delta ←− Ê(S(i−1))− Ê(S(i));

11 end

Algorithm 1: Local combinatorial optimization for elastica minimiza-
tion.

The running time of algorithm 11 is summarized in table 1. All the ex-
periments in this paper were executed on a five-core 3.4Ghz CPU and the
number of pixels in the triangle, square and flower shapes are respectively



10 D. Antunes et al.

(a) h=1.0 (b) h=0.5 (c) h=1.0 (d) h=0.5

Fig. 2: Local combinatorial optimization process results for the square and
flower shapes. Shapes displayed at every 2 iterations for the square and 7
iterations for the flower.

841, 1867, 521 for grid step h = 1.0. Although its use in practical applications
is limited, we demonstrate that digital estimators are effective in their mea-
surements and the flows evolve as expected. We observe that it is a complete
digital approach, and we do not suffer from discretization and rounding prob-
lems, a common issue in continuous models. Furthermore we have checked that
this approach works indifferently with Integral Invariant curvature estimator
and Maximal Digital Circular Arc curvature estimator. So the convergence of
the digital curvature estimator seems to be the cornerstone to get a digital
curve behaving like a continuous Elastica. In the next section, we explore a
more efficient approach.
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Iterations

square(h=1)
square(h=0.5)

flower(h=1)
flower(h=0.5)

Fig. 3: Elastica computation along it-
erations of algorithm 11

h = 1.0 h = 0.5
Square 47s (5s/it) 260s (12s/it)
Flower 1235s (23s/it) 8516s (52s/it)

Table 1: Running times for the lo-
cal combinatorial optimization al-
gorithm with k = 1, N = 20. Four
threads were used.

4 Digital Curvature Flow

Given a digital shape S ∈ Ω, the idea is to evolve a flow S(i) where S(i+1) is
derived from the minimization of the sum of the squared curvature at S(i). In
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order to guarantee connectivity, we limit the optimization region to a subset
of Ω, namely the inner pixel boundary of S(i). We also use the notation |S| to
denote the cardinal of a digital set S.

4.1 Discrete variational model for discrete curve evolution

We start by definition the optimization variables.

Definition 9 (Inner pixel boundary) Given a digital shape S embedded
in a domain Ω, we define its inner pixel boundary set O(S) as

O(S) = { x | x ∈ S, |N4(x) ∩ S| < 4 } ,

where N4(x) denotes the 4-adjacent neighbor set of x (without x).

In other words, each flow iteration decides which pixels in the inner bound-
ary are to be removed and which are to be kept. To simplify notation, we
denote the optimization region of S(i) as O(i), and the foreground set as
F (i) = S(i) \ O(i). We recall the definition of our digital curvature estima-
tor :

κ̂2(y) = c1

(
c2 − |Br(y) ∩ S|

)2
, (5)

where c1 = 3/r6 and c2 = πr2/2.

We define O
(i)
r (y) := O(i) ∩ Br(y) and an analogous definition holds for

F
(i)
r (y). Expanding (5), we get

κ̂2(y) = c1

(
c2 −

∑
xj∈Br(y)

(
xj + |F (i)

r (y)|
))2

= c1 ·
(
C + 2

(
|F (i)

r (y)| − c2
) ∑
xj∈O(i)

r (y)

xj +
∑

xj∈O(i)
r (y)

x2j +
∑

xj ,xk∈O(i)
r (y)

j<k

2xjxk

)
,

where C = c22 − 2c2 · |F (i)
r (y)|+ |F (i)

r (y)|2 is a constant. By ignoring constants
and multiplication factors and using the binary character of the variables, we
define the following family of energies for given parameters α, β, γ ≥ 0.

Em(X,S) =
∑
x∈X

αs(x)

+
∑

y∈Rm(S)

β
(

(1/2 + |F (i)
r (y)| − c2) ·

∑
xj∈O(i)

r (y)

xj +
∑

xj ,xk∈O(i)
r (y)

j<k

xjxk

)

+
∑
x∈X

γg(S, x), (6)

where g(S, x) denotes a similarity term as distance to initial shape S or data
fidelity term and s(x) denotes a length penalization term. Each choice of m
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generates a different flow, which is generaly described in the Digital Curve
Evolution (DCE) algorithm 15.

input : A digital set S; The ring number m; Length(α), curvature(β)
and similarity(γ) coefficients; the maximum number of
iterations maxIt;

1 S(i) ←− S;
2 while i < maxIt do
3 //Expansion mode

4 if i is odd then

5 X(i) ←− arg minX Em(X,S(i));

6 S(i) ←− F (i) +X(i);

7 S(i) ←− S(i);

8 end
9 //Shrinking mode

10 else
11 X(i) ←− arg minX Em(X,S(i));

12 S(i) ←− F (i) +X(i);

13 end
14 i ←− i +1;

15 end

Algorithm 2: Digital curvature evolution algorithm (DCE).

Recall that the integral invariant estimator approaches curvature by com-
puting the difference between half of the area of a chosen ball and the area of
the intersection of this ball with the shape. In particular, regions of positive
curvature have fewer pixels in their intersection set than on its complement
w.r.t the estimation ball. This implies that variables in such regions are la-
beled with 1, as the unbalance grows otherwise. We attenuate curvature if we
shift the center of the estimation ball towards the interior of the shape, which
means removing the 1-labeled pixels. That is why we take the complement of
the optimization solution.

The same reasoning applies for non-convex parts. Indeed, concave regions
are convex in the shape complement. In the expansion mode we apply the same
reasoning on the image complement, and by doing this we are able to handle
concavities. It is called expansion mode because the optimization region, in
this case, is the outer pixel boundary of the original shape. Table 2 sums up
these arguments.

Length and similarity terms should be properly defined in order to comply
with the complement step of the DCE algorithm. The length penalization is
defined as

s(x) =
∑

xj∈N4(x)

t(xj), where t(xj) =


(x− xj)2, if xj ∈ O(i)

r

(x− 0), if xj ∈ F (i)
r

(x− 1), otherwise

(7)
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shrink mode κ� 0 κ ≥ 0 κ < 0
X xk = 1 xk ∈ {0, 1} xk = 0

S(i+1) ← S(i) \X eroded prob. eroded unchanged

expansion mode κ̄� 0 κ̄ ≥ 0 κ̄ < 0
X̄ x̄k = 1 x̄k ∈ {0, 1} x̄k = 0

S(i+1) ← S̄(i) \ X̄ dilated prob. dilated unchanged

Table 2: Since the curvature is negated when reversing the curve (i.e. κ̄ = −κ),
this process can only shrink convex parts in shrink mode and expand concave
parts in expansion mode.

We do not use similarity terms in this section, thus we postpone the defini-
tion of such terms until later in this article, with the description of how DCE
can be used in an image segmentation framework.

In figure 4 we see some results for the DCE algorithm with m = 1. We
observe a global evolution towards rounder shapes, but with several artifacts.
We minimize the effects of a jaggy boundary by setting α > 0. Nonetheless, a
higher estimation ball radius creates unstable shapes. In fact, the estimator is
very sensitive in regions of low squared curvature, and it is precisely in those
regions that spurious pixels are created.

(a) r = 3, α = 0 (b) r = 3, α = 0.15 (c) r = 5, α = 0.15

Fig. 4: The algorithm is very sensitive to the little variations of the estimator,
which are particularly important in regions of low squared curvature. Artifacts
are somewhat reduced with a length penalization but increases if we use a
higher ball radius.

4.2 A more stable model.

In the previous section we noticed that the algorithm produces shapes with
many artifacts due to the small uncertainties of the estimator along regions
of low squared curvature. We argue that, evaluating the estimation ball along
outer ring sets we avoid those sensitive areas by focusing the optimization
process only on regions with highest squared curvature value.
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(a) r = 5,m = 1 (b) r = 5,m = 2 (c) r = 5,m = 3

Fig. 5: By positioning the estimation ball on farther rings, we minimize arti-
facts creation.

In our experiments, the best results are obtained by executing DCE algo-
rithm with m equal to r, where r is the estimation ball radius (see figure 5 ).
We observe that Elastica may increase after some iterations if chosen radius is
too large, as in the case of the triangle in figure 6 in which the flow converges to
a single point. We conjecture that an appropriated value for the radius should
be given by the shape reach. The produced flow has no difficulties in handling
changes on topology, and it presents different speeds for regions with low and
high curvature values, as illustrated in figure 7.

4.3 Optimization method

Let f be a function of n binary variables with unary and pairwise terms, i.e.

f(y1, · · · , yn) =
∑
j

fj(yj) +
∑
j<k

fj,k(yj , yk).

Function f is submodular if and only if the following inequality holds for
each pairwise term fj,k [22]:

fj,k(0, 0) + fj,k(1, 1) ≤ fj,k(0, 1) + fj,k(1, 0).

Energy Em is non-submodular and optimizing it is a difficult problem,
which constrains us to use heuristics and approximation algorithms. The QPBO
method [35] transforms the original problem in a max-flow/min-cut formu-
lation and yields a full optimal labeling for submodular energies. For non-
submodular energies the method is guaranteed to return a partial labeling
with the property that the set of labeled variables is part of an optimal solu-
tion. That property is called partial optimality.

In practice, QPBO can leave many pixels unlabeled. There exist two exten-
sions to QPBO that alleviate this limitation: QPBOI (improve) and QPBOP



Digital Curve Evolution by Elastica Energy 15

(a) r = 3, h = 0.5

(b) r = 5, h = 0.5
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Fig. 6: The choice of radius impacts the flow. In the figures, the flow ceases
to evolve for all shapes when r = 3 (a). In figure (b), for r = 5, the triangle
evolves to a single point, while the others stop in an intermediate shape, as
in (a). In figure (c), we observe that for a given choice of radius, the elastica
may increase after a certain number of iterations.
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(a)

(b)

Fig. 7: High curvature regions evolves faster than lower ones (a). The flow can
handle topological changes (b).

(probe). The first is an approximation method that is guaranteed to not in-
crease the energy, but loses the property of partial optimality. The second is
an exact method which is reported to label more variables than QPBO.

The percentage of unlabeled pixels by QPBOP for E1 is quite high, but
the percentage decreases to zero as we set m equal to r. Therefore, we are
more confident in taking the solution for values of m close to r. However, the
way it varies across m values differs from shape to shape, as is illustrated in
figure 9. We also noticed that, for m = r, all the pixels were labeled, which
may indicate that Er is an an easy instance of the general non-submodular
energy Em, but this remains to be proved. The number of pairwise terms in
Er is roughly half of those in E1 (see figure 8).

We have used QPBOI to solve Em. Naturally, in the case where all pixels
are labeled by QPBOP, QPBOI returns the same labeling as QPBOP.

5 Application to image segmentation

We present an application of our digital curve evolution algorithm to super-
vised image segmentation. The DCE acts as a contour correction method.
Here we use a data fidelity term in order to characterize the object of interest.
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Fig. 8: We plot the ratio of pairwise terms among all
(|X(i)|
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combinations.

The highest ring has rougly half the number of pairwise terms than the lowest
ring.

Given foreground and background seeds selected by the user, we derive mixed
gaussian distributions of color intensities Gf and Gb, and we define the data
fidelity term as the cross-entropy, i.e.

g(y) = −(1− y) logGf (I(y))− y logGb(I(y)). (8)

We use the DCE algorithm to regularize an initial contour outputed by
some segmentation algorithm or delineated by the user. In this application,
the similarity term of the DCE is set to the data fidelity term (8).
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Fig. 9: For each plot, we first produce shapes
{
S(i)

}
executing DCE with

m = r. Then, for each shape in
{
S(i)

}
, we execute one iteration of DCE

for different values of m and we count the unlabeled pixels. The number of
unlabeled pixels by QPBOP remains high for lower values of m, and goes to
zero when m = r. We observe the same behaviour for varying radius values.
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input : An image I; seed mask M ; the estimation ball radius r; length
(α), squared curvature (β) and data fidelity (γ) coefficients;
initial dilation d; stop condition value tolerance; the maximum
number of iterations maxIt;

1 S ←− GrabCut(I,M);

2 S(0) ←− dilate(S,d);
3 delta ←− +∞;
4 i←− 0;
5 while i < maxIt and delta > tolerance do
6 S(i+1) ←− DCE(S(i), r, α, β, γ, 2);

7 delta ←− |S(i) − S(i+1)|;
8 i ←− i +1;

9 end

Algorithm 3: Contour correction algorithm.

The algorithm can be initialized by a collection of compact sets, or with the
result of a third-party segmentation algorithm, as GrabCut [34]. We include
an additional parameter d that dilates the initial sets using a square of side
one before executing the flow.

Seeds (α = 0, β = 0.5) (α = 0, β = 1)

GrabCut (α = 0.5, β = 0) (α = 1, β = 0)

Fig. 10: Comparison of squared curvature regularization (first row) and length
regularization (second row).
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GrabCut Contour Correction Schoenemann
(r = 5, α = 0.1, β = 1.0, γ = 3.0) (α = 0.1, β = 1.0)

Fig. 11: The proposed method regularizes GrabCut contours and returns mean-
ingful results. We can observe the completion feature of curvature in the sec-
ond row, and we don’t suffer from oversegmentation issues as Schoenemann’s
method. However, our flow may stop in a local optima as in the fourth row,
while Schoenemann’s is able to extrapolate such solutions.

We evaluate our method using the BSD300 database [29]. All images con-
tains the same number of pixels, the resolution being 321x481 in portrait mode.
We compare the results of our method with segmentations given by GrabCut
and Schoenemanns’s method [38]. We report an average of 3s per flow itera-
tion, and an average of 30 iterations per image. While GrabCut executes in less
than one second, Schoenemann’s method may take several hours to complete.

In figure 10 we can observe the results of a curvature regularization in
comparison with a pure length regularization. The curvature can fill gaps and
is smoother than the one produced by length only, resulting in more pleasant
segmentations. In figures 11 and 12 we list several results of our method and we
compare them with segmentation produced by GrabCut and Schoenemann’s
method. Our method is successful in producing curvature regularized segmen-
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GrabCut Contour Correction Schoenemann
(r = 5, α = 0.1, β = 1.0, γ = 3.0) (α = 0.1, β = 1.0)

Fig. 12
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tations and demonstrates the completion property of curvature. Moreover, it
does not suffer from over segmentation, it is much faster than Schoenemann’s,
and in several opportunities produces better segmentations than GrabCut.

6 Conclusion

We have studied in depth several digital curve evolution models based on a
digital version of the Elastica energy and we have presented an application
to image segmentation. The processes we have described are completely dig-
ital, and do not suffer from issues that typically arise in models that passes
through a discretization stage, such as rounding. Moreover, the model can han-
dle changes in topology and its results are competitive with similar approaches
while achieving reasonable running times.

Future developments of this work will include extending the DCE algorithm
to 3d, as the integral invariant estimator is available in higher dimensions. As
a result, a denoising application may be derived by lifting the flow to 3d with
a data fidelity defined by image intensities or by distance to initial position.
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