A nonlocal operator method for finite deformation higher-order gradient elasticity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A nonlocal operator method for finite deformation higher-order gradient elasticity

Huilong Ren
  • Fonction : Auteur
  • PersonId : 1089853
Nguyen-Thoi Trung
  • Fonction : Auteur
Timon Rabczuk
  • Fonction : Auteur
  • PersonId : 955097

Résumé

We present a general finite deformation higher-order gradient elasticity theory. The governing equations of the higher-order gradient solid along with boundary conditions of various orders are derived from a variational principle using integration by parts on the surface. The objectivity of the energy functional is achieved by carefully selecting the invariants under rigid-body transformation. The third-order gradient solid theory includes more than 10.000 material parameters. However, under certain simplifications, the material parameters can be greatly reduced; down to 3. With this simplified formulation, we develop a nonlocal operator method and apply it to several numerical examples. The numerical analysis shows that the high gradient solid theory exhibits a stiffer response compared to a 'conventional' hyperelastic solid. The numerical tests also demonstrate the capability of the nonlocal operator method in solving higher-order physical problems.
Fichier principal
Vignette du fichier
higherOGE (4).pdf (2.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03127040 , version 1 (01-02-2021)
hal-03127040 , version 2 (31-05-2021)

Identifiants

  • HAL Id : hal-03127040 , version 1

Citer

Huilong Ren, Xiaoying Zhuang, Nguyen-Thoi Trung, Timon Rabczuk. A nonlocal operator method for finite deformation higher-order gradient elasticity. 2021. ⟨hal-03127040v1⟩
75 Consultations
147 Téléchargements

Partager

More