N

N

A nonlocal operator method for finite deformation
higher-order gradient elasticity
Huilong Ren, Xiaoying Zhuang, Nguyen-Thoi Trung, Timon Rabczuk

» To cite this version:

Huilong Ren, Xiaoying Zhuang, Nguyen-Thoi Trung, Timon Rabczuk. A nonlocal operator method
for finite deformation higher-order gradient elasticity. 2021. hal-03127040v1

HAL Id: hal-03127040
https://hal.science/hal-03127040v1

Preprint submitted on 1 Feb 2021 (v1), last revised 31 May 2021 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03127040v1
https://hal.archives-ouvertes.fr

A nonlocal operator method for finite deformation higher-order
gradient elasticity

Huilong Ren?, Xiaoying Zhuang™°, Nguyen-Thoi Trung?, Timon Rabczuk®®*

@Institute of Structural Mechanics, Bauhaus-Universitit Weimar, 99423 Weimar, Germany
bState Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji
University, Shanghai 200092, China
¢Institute of Conitnuum Mechanics, Leibniz University Hannover, Hannover, Germany
4 Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
¢ Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh Clity, Viet Nam

Abstract

We present a general finite deformation higher-order gradient elasticity theory. The govern-
ing equations of the higher-order gradient solid along with boundary conditions of various
orders are derived from a variational principle using integration by parts on the surface. The
objectivity of the energy functional is achieved by carefully selecting the invariants under
rigid-body transformation. The third-order gradient solid theory includes more than 10.000
material parameters. However, under certain simplifications, the material parameters can be
greatly reduced; down to 3. With this simplified formulation, we develop a nonlocal operator
method and apply it to several numerical examples. The numerical analysis shows that the
high gradient solid theory exhibits a stiffer response compared to a 'conventional’ hypere-
lastic solid. The numerical tests also demonstrate the capability of the nonlocal operator
method in solving higher-order physical problems.

Keywords: Nonlocal operator method, finite strain, second/third-gradient strain, invariant

1. Introduction

Gradient theories have attracted increasing interest due to their capability of describing

phenomena such as size effects, edge and skin effects as well as nonlocal effects in mate-
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rials, which cannot be tackled by conventional continuum mechanics. Gradient elasticity
theory introduces an internal length scale and higher-order gradients of the displacement
field to account for size effects at the micro- or nano-scale. Gradient theories emerge from
considerations of the microstructure in the material at micro-scale, where a mass point after
homogenization is not the center of a micro-volume and the rotation of the micro-volume
depends on the moment stress/couple stress as well as the Cauchy stress. The starting
point of gradient elasticity theory can be traced back to Cosserat theory in 1909 [1]. A
variety of gradient elasticity theories have been proposed which include Mindlin solid theory
2, 3], nonlocal elasticity [4], couple stress theory [5, 6, 7], modified couple stress [8, 9] and
second-grade materials [10].

Gradient elasticity as a generalization of classical elasticity includes the contribution of
strain gradients in the strain energy. Different from classical elasticity theory, such consid-
eration enables gradient elasticity to model some interesting phenomena (such as size effect,
the stress and strain effects on surface physics, nonlocal effect at micrometer/nanometer
scale). Muller and Saul [11] reviewed the importance of surface and interface stress effects
on thin films and nano-scaled structures, including the self-organization and elastic driven
instabilities of nano-structures. Fischer etal. [12] studied the role of the surface energy and
surface stress in phase-transforming nano-particles. Davydov etal. [13] showed that a con-
tinuum based on gradient elasticity with surface energy contributions can capture size effects
that are observed in atomistic simulations.In Refs [14, 15, 16] , it is shown that gradient
elasticity theory can circumvent stress singularities in local elasticity. Gradient elasticity is
close linked to flexoelectricity, where the strain gradient causes an electromechanical effect
(17, 18, 19]. Due to regularity property of continuum mechanics, gradient elasticity has been
applied to problems with strain localization [20, 21, 22]. The micro-structure in continua
plays also a crucial role in metamaterials [23].

Second-gradient elasticity, taking into account the Hessian of the strain tensor, can be
viewed as a generalization of gradient elasticity. This theory has been firstly proposed by
Mindlin in 1965 [24] in order to account for cohesive force and surface-tension in solids.

Beside the second-gradient term in the displacement field, Polizzotto [25, 26] studied the
2



static/dynamic behavior of linear second-gradient elasticity with second velocity gradient
inertia. Askes etal. [27, 28] showed higher order inertia models are able to describe realisti-
cally wave dispersion phenomena in a nonhomogeneous medium. Javili etal. [29] derived the
governing equations and boundary conditions for third-gradient elasticity with geometrical
nonlinearities from variational principles. In the derivation, the bulk and boundary (surface
and curve) energies are considered as independent energy forms and three balance laws are
established in their respective domains. Reiher etal. [30, 31] developed a finite third-strain
gradient elasticity/elastoplasticity theory.

The higher order continuity in gradient elasticity theory imposes challenges on many
numerical methods. In order to satisfy the C! or C? continuity, a variety of numerical
methods have been developed, see for instance the mixed finite element method proposed
in [32, 33, 34, 16], boundary element method [35], meshless methods [36, 37|, isogeometric
analysis (IGA) formulations [38, 39, 40] and nonlocal operator method (NOM) [41, 42, 43].
NOM is proposed as a generalization of dual-horizon peridynamics [44, 45, 46, 47]. It uses
an integral form (i.e.nonlocal operators) to replace the local partial differential operators
of various orders. The nonlocal operators can be viewed as an alternative to the partial
derivatives of shape functions in FEM. Combined with a variational principle or weighted
residual method, NOM obtains the residual vector and tangent stiffness matrix in the same
way as in FEM. There are three versions of NOM, first-order particle-based NOM [43, 48],
higher order particle-based NOM [42] and higher order NOM based on numerical integration
[41]. The particle-based version can be viewed as a special case of NOM with numerical
integration when nodal integration is employed. NOM has been applied to the solution of
the Poisson equations in high dimensional space, von-Karman thin plate equations, fracture
problems based on phase fields [42], waveguide problem in electromagnetic field [48] and
gradient solid problems [41]. NOM is suitable for problems requiring higher order continuity
though its application to higher order gradient elasticity has not been explored yet.

Current higher order gradient solid theory is limited to third order. Javili etal. [29]
implemented the variational derivation of the third-gradient elasticity without considering

the specific forms of energy. The derivation follows the setting of first Piola-Kirchhoff stress.
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The concrete form of third-strain gradient theory with finite deformation is proposed in [30],
where the objectivity of the energy form is emphasized. However, an associated implemen-
tation is missing to our best knowledge. In this paper, we propose a different strain energy
density with objectivity. The energy form is based on the second Piola-Kirchhoff stress and
is invariant under rigid transformation. The number of gradient order is extended to 5 in
2D or 3 in 3D. For the first time, the geometrical nonlinear fifth-order gradient elasticity in
2D and third-order gradient elasticity in 3D are studied by numerical experiments based on
nonlocal operator method.

The content of the paper is outlined as follows: The general strain energy density for
large deformations is proposed for the fourth-order gradient elasticity in section 2. In Section
3, we derive the governing equations and the associated boundary conditions for the third-
order gradient elasticity from variational principles and exploiting integration by parts on
surfaces. In section 4, the framework of the particle-based nonlocal operator method is
briefly summarized and its implementation for solving higher order gradient solid presented.
In section 5, several representative numerical tests, including a point displacement load,
point force load and the influence of the length scale in linear /nonlinear gradient elasticity,
are presented to study the physical response of higher order gradient elasticity. Finally, we

conclude our manuscript in section 6.

2. Higher order gradient solid with finite deformation

Let us denote the material coordinates (in the initial configuration Q) by X, the spatial
coordinates (in the current configuration ;) by @ and the displacement field by u := x — X.
The deformation gradient F', right Cauchy Green tensor C' and Green-Lagrange strain tensor

FE are written as

ox
C:FT-F,E:%(C—I) (2)

where I is the identity matrix and VI = g—i. The principle of frame indifference requires the

quantity remain invariant under rigid body transformation &’ = Q(t)x+c(t) where ¢(t) is the
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rigid translation vector, Q(t) the (orthogonal) rotation matrix satisfying QQT = QTQ = I.

Vectors and second-order tensors are objective if they are related by the rotation tensor as
u=Q u (3)
T=Q-T-Q" (4)

The deformation gradient under rigid body transformation is related by

, o0x'  Ox' Ox
“ox 0w ox 9F (5)

Quantities are invariant if they remain unchanged by the rigid transformation. Apparently,

the right Cauchy tensor is invariant as C' = FTF' = FTQTQF = F'F = C. Let

F, = g;} denote the partial derivative of F' with respect to X;. The derivative of F’ and

Q can be written as
F';=Q,F+QF, (6)
QIQ+Q"Q,;=0 (7)
The gradient of C’ can be derived as
C' . = (F/TF/) o F/TF/+F/TF/'
= (F'Q+F/Q")QF + F'Q"(Q,F + QF),)
—F'QTQF +F/Q"QF + F'Q"Q,F + F'Q"QF;
=-F'Q'Q,F+F'Q"Q,F +F'F; + F{F

= (F'F),=C,. (8)
Therefore VC' is invariant. Note that VF' is neither objective nor invariant since

F/z =(QF);,=Q,F+QF,#F, (9)

VF:VF =Y F;:F;#Y F;:F, (10)



Hence VF' cannot be used directly to define the energy density. However, the invariant

property makes VC' a good choice. Different gradient orders of strain tensor can be written

as
OF 1
H=__=VE=-(F'VF+VF'F 11
X v 2( VF +V ) (11)
for the first gradient strain tensor,
OH O*E 9
¢ 0X 0X? v (12)

for the second-gradient strain tensor, and

_9G _ B
90X 9X3

=V°E (13)

for third-graident strain tensor and with V* = V® ... ® V. It can be verified that C, E, H, G, L
—_———

n times
are invariants under translation and rotations. Thus, these quantities can be used to define

the strain gradient and generalized stress

. 05
Sij = Dijr By with D = OEL, (14)
. OR;jk
Rijk = EijklmnHlmn with Eijklmn = aHl] (15)
. O0Qijki
Qijkl = IFijklmnstC7Y7)’1n,9t with IFijklmnst = oG z (16)
mnst
Piikim = Gijkimirj kvm Lijrrm: With Gijkimirjrerm = _——ukm_ (17)
aLi/j/k/l/m/
The strain energy density in the initial configuration can be assumed as
1
¢ = §(SijEij + RijuHiji + QijiiGijin + Pijim Lijrim) (18)
1
= §<Eij]D)ijklEkl + HijiBijkimn Himn + GijrilFijkimnst Gmnst + LijkimGijrimir i vm: Li i vme)
(19)



where D is a 4th-order tensor, E a 6th-order tensor, F an 8th-order tensor and G a 10th-order
tensor. The second Piola-Kirchhoff stress is work conjugate to the Green-Lagrange strain
49, 50]. Therefore, the generalized second Piola-Kirchhoff stresses define the strain energy
density in the initial configuration and are objective under any rigid transformations. For
an n dimensional space, a kth-order tensor has n* entries, for example G has 2!9 = 1024
elements in 2D and 3'° = 59049 elements in 3D. However, when symmetry conditions are
exploited, the number of elements can be greatly reduced. We discuss the symmetry of a 6th-
order tensor in Appendix Appendix A and in Viogt notation in Appendix Appendix B. For
a third-order gradient solid, there are thousands of material parameters to be determined,
which are difficult to determine experimentally. For simplicity, we introduce only three

material length scales.

$(E,VE,V2E,V’E) = %(s . E+ BVSVE + 1iv2S @ V2E + [8v35 .0) V3E> (20)

where -() is the generalization of the inner product, for example, - = . .2) =; .0 = and
the stresses can be written as
S=D:F (21a)
R=VS (21b)
Q=V’S (21c)
P=V?S. (21d)
The total internal strain energy in the domain can be expressed as
Fint = / ¢(E,VE ,V*E,V’E) (22)
Q

We recall that € is the initial configuration. Here we used [,{-} := [,{-} dV. When small
deformations are assumed, the Green-Lagrange strain and second Piola-Kirchhoff stress

degenerate to the linear strain and Cauchy stress tensor:
1
E—e=3 ((vu)T + Vu) (23)

S—o=D:¢ (24)
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Then Eq.20 can be written as
1
d(e, Ve, Ve, Vie) = Soe+ PVoiVe + 13V%0 WD Vi + §V30 O Vi) (25)

Based on the simplified higher gradient elasticity in Eq.20, the general nth-gradient

elasticity can be written as
1 n
¢(E,VE,V’E,...V"E) = 5 (s B+ (l)*vEs ) V’“E) (26)
k=1

where [}, is the internal length scale of kth-order. We employ E™ elasticity (n = 0, 1,2, 3,4, 5)
to abbreviate the nth-gradient hyperelasticity theory wherein V"FE is used to define the
energy density functional. Accordingly, the conventional hyperelasticity is denoted by E°
elasticity, gradient elasticity is abbreviated by E' elasticity and the second-gradient elasticity
by E? elasticity. The highest order of the energy form of E™-elasticity is (n + 1), while that
of the strong from is 2(n + 1). The highest order of gradient elasticity we implemented is
the E° elasticity in 2D. For E° elasticity, the governing equations are a set of 12th-order

nonlinear partial differential equations (PDEs).

3. Governing equations of second-gradient solid

3.1. Integration by parts on close surface

Before delving into the variational derivation of second-gradient solids, we briefly re-
view the integration by parts in domains and on surfaces using the following abbreviations

Jol-} = Jo{-} dVand [, {-} == [,o{-} dT'. The integration by parts in domains is

/S:Vu:/n-S-'u,—/V-S-'u, (27)
0 B Q

According to Refs [51, 52|, the integration by parts under the assumption of smooth surfaces

can be expressed as

/S:Vu:/ S:Vnu~|—/ S:Vtu:/ <S:Vnu+(gn-S—Vt.S).u> (28)
o9 o9 00 o9



Figure 1: Domain with piecewise smooth surfaces; n is the outward unit normal direction of surface boundary
09, v is the tangent direction of line boundary 62Q;;, m = v x n is the outward normal direction of line

boundary.

where g = V,;-n is the Gauss curvature, V,; and V,, are the tangential and normal derivative
Vi=(1-nn") -V (29)
V,=nn"-V (30)

In above derivation, Vu needs to be divided into the tangential and normal parts with
respect to the surface, i.e.Vu = V,u + V,u. For the case of piecewise smooth surfaces

shown in Fig.1, the boundary term should be considered explicitly,

S’:Vu:/ (S:Vnu+(gn-S—Vt~S)«u>+ m-S-u (31)
1) o0

82Q

where m is the outward normal direction of 02 in the tangent plane defined by n.

3.2. Variational derivation of second-gradient solid

In this paper, we only consider the higher order bulk energy. For the boundary (surface
and curve) energies, the reader is referred to [29] for more details. The second-gradient
solid for linear elasticity with second velocity gradient inertia can be found in [25, 26]. Let
¢ = ¢(u, Vu, V*u, V3u) denote the internal energy density of a second-gradient solid (E?

elasticity). The variation of the internal energy in €2 is then given by

8 Fimt = 99 du + 99 : Véu + ¢ V26u + ¢ : V3ou
o Ou oVu o0Viu oViu
~~ N—— N—— ~——
b S1 Ss Ss3
Q\TJ . Y N
p p2 p3 p4

9



where b can be viewed as the body force density, S; denotes the work conjugate to Viu, (i =

1,2,3) and S; the general stress defined in the initial configuration:

9 9 IV’E
S = 5vom ~ OVIE © oviu (33)
g _ 00 _ 06 OVE 099 OV'E (34)
T 9Veu  OVE OViu  OV2E T 9Viu
_ 99 _0p O0E , 99 OVE 96 OV2E (35)
"7 9Vu OE 9Vu  OVE 0Vu OVZE ~ 0Vu
where E, VE,V2E have the explicit forms
1 T T
E = 3 (Vu + Vu + Vu Vu) (36a)
1
VE - (V(VU)T V24 V (V) Va4 VuTvzu) (36b)
1
V’E = 3 (V2(Vu)T + VPu + V3(Vu)'Vu + V(Vu) ' Viu + V(Vu) ' Vu + VuTV3u>

(36¢)

The p4 part in Eq.32 can be written as

/ Sy V3ou = / n-S;Viu + / —V - S;'V%u
Q a0 Q

N ;? N ;g o Q —f—’p(j

The p7 part in Eq.37 is obtained via integration by parts on surface

/agn - 851V(Vou) = /Q (gfn, (n-83) =V (n- 53))/ - Vu

8 TV
Vi
= Vi :Vou (38)
9
The p9 part reads
/ Vi :Véu = Vi:Vyou+ (gn-Vi — V- Vp) - du (39)
o0 o0

10



Hence, p4 has the form

/ S Viou = Vi :Viu +/ n - S5V, (Viu) +/ —~V - S5iV%0u (40)
Q a0 a0 ™ ~ d QT

The p6 and p9 terms have the same form as part p3 in Eq.32. The summation of ps, pg, py

can be written as

/ S,V u — V- S5iV26u+ | Vi :Véu = /(S2 ~V-85):V3¥u+ [ Vi:Viu
Q

o0 o0

:/ n-(Sy—V-8;): Vou+ w:vau—/v-(SQ—v-sg):vau
oN Q

o0

2/6 n-Vi—VeVitgn (n(5:—V-5)— Vi (n (5~ V-5)))du

Q\

Vs

+/ (Vl+n(Sg—V,S'3))Vnéu—i—/—V(Sg—VSg)Véu
o0 Q ~~ d

N

pl0

= ‘/2'5U+/ (V1+n-(Sg—V-Sg)):Vn5u+/—v-(Sg—V-Sg):V6u (41)
o0 o9 Q

For simplicity, the integration by parts of p10 + p2 is

/(Sl—v.(sz—v.sg));vau:/ n.s4.5u—/v.s4-5u (42)
QN ~~ 4 Fol9) Q
Sy
Then
5Ent:/(b—V-S4)-6u+/ (Vi+n-(S;—V-8S3)):V,0u
Q a0
+ V2-5u+/ n-S4-5u+/ n - S5V, (Viu) (43)
o0 o0 o0
Q a0
a0 a0
where
54251_V'(52_V'53) (45&)
Vi=gn-(n-S3)—V; (n-Ss) (45b)

Vg:gnvl—VtVl—i—gn(n(Sg—V,S'g))—Vt(n(Sg—VSg)) (45(3)
11



The external energy is given by

Fesct: P(U—U)+/ P’U,
209, 209,
+ Q:(Vnu—vnu)—l—/ Q:V,u
o0l a0k,
+ Ri(V,Vu - V,Vu) + RV,Vu
002, 002,

(46)

where P = (‘/2+7’LS4),Q: (Vl—l—n(Sg—V,S'g)),R:nSg, 693,893\,,(2:0,1,2)

refer to the Dirichlet and Neumann boundary conditions for u of different partial derivative

orders. The kinetic energy with velocity gradient can be written as [26]
hor 1
IC:/ /—pu~u+—pz§vu-vu
o Ja 2 2
The variation of the kinetic energy can be written as

t1
(5IC:/ /pu~5u+pz§vu-v5u
to Q

t1

:/ /—pi’t~6u—pl3Vﬁ~V§u
to Q
t1

:/ /—pu-5u+pl§v-vu-5u
to Q

For any du, 6V, u,dV,Vu, the Hamilton principle

t1 t1
oK — / 0Fint + / 0Fest =0
to to

leads to

V,.Vu =V, Vu on 003,
R = R on 0Q3%
12
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The maximal order of derivative in Eq.50a and V5 is 6, 5, respectively. Similarly, the variation
of the strain energy density of strain gradient elasticity (E* elasticity) can be derived. By
setting S3 = 0 in Eq.50 , we obtain the governing equations and boundary conditions of

gradient elasticity

pii — 3V -Vii=-b+V-(8;-V-8,)inQ (5la)
u = 4 on 08, (51b)

P = P on 09Y% (51c)

V,u = V,u on 08}, (51d)

Q = Q on 90}, (5le)

where @ =n- Sy, P = (gn-(n-S3) —V,;-(n-S3)+n-(S;—V-8Sy)), 90,00, (1 =0,1)
indicate the Dirichlet and Neumann boundary conditions for u of different partial derivative

orders.

4. Numerical implementation

4.1. Review of Nonlocal Operator Method

The Nonlocal Operator Method (NOM) uses the integral form to replace the partial
differential derivatives of different orders. We adopted a Total Lagrangian description of
motion for the higher order gradient elasticity NOM. Consider a domain as shown in Fig.2(a),
let X; be spatial coordinates in the domain €2; r := X; — X is a spatial vector ranging from
X, to X;; v; :=v(X,,t) and v; := v(Xj,t) are the field values for X; and X, respectively;
v;; := v; — v; is the relative field vector for spatial vector r.

Support S; of point X is the neighborhood of point X;. A point X in support &;
forms the spatial vector r(= X, — X;). The support in the NOM can be a spherical domain,
a cube, semi-spherical domain and so on.

Dual-support is defined as a union of points whose supports include X, denoted by

13



Figure 2: (a) Domain and notation. (b) Schematic diagram for support and dual-support, all shapes above

are supports, Sx = {X1, X2, X4}, S = {X1, X2, X3}.

Point X; forms the dual-vector (= X; — X; = —r) in §/. On the other hand, ' is the
spatial vector formed in §;. One example to illustrate the support and dual-support is shown
in Fig.2(b).

The first-order nonlocal operator method uses the basic nonlocal operators to replace the
local operator in calculus such as the gradient, divergence and curl operators. The functional
formulated by the local differential operator can be used to construct the residual or tangent
stiffness matrix by replacing the local operator with the corresponding nonlocal operator.

The nonlocal gradient of a vector field v for point X; in support S; is defined as

Vo, = /S w(r)v; @r dV - </s w(r)rer dV}) 71. (53)

The nonlocal gradient operator and its variation in discrete form are given by

Vo, = Z w(r)v,; @ rAV; - < Z w(r)r ® rAV}-) 71, (54)
JES; JES;
Vov; = Z w(r)dv;; @ rAVj - (Z w(r)r ® rAVj> 71. (55)
JES; JES;

14



The operator energy functional for vector field at point «x; is
Fir 3t [ wle)(For ) - (Vo= vy) V) (56)
S;
where p" is a penalty coefficient. The residual and tangent stiffness matrix of .7-"ihg can
be obtained with ease, see [43] for more details. For problems that require higher order
continuity, the higher order NOM is needed. According to Ref [42], a scalar field u; at a
point j € §; can be obtained by a Taylor series expansion at u; in d dimensions with maximal

derivative order not higher than n,

o T?l...rgd ‘ o] +1
Uj = u; + Z muz,nl...nd +O(r ) (57)
(nl,...,nd)Eag
with
T:(T17...,T’d>:(Xj —Xﬂ,...,de—XZ‘ ) (58&)
anl—i-...-‘,-nd ;
Uiny.mg = “ (58b)

OX...0X
la| = max (ny + ... + ny) (58¢)

afj being the list of flattened multi-indexes, given by
d
ag:{(nl,...,nd)ﬂanign, n; € N, 1 <i<d} (59)
i=1

and N° = {0,1,2,3,...}. All elements in o/} of Eq.59 can be obtained easily by Mathematica

[42]. For any multi-index (n,...,n4) € o, the partial derivative and the polynomial are

ity
Uing . ngs ERRTE V(ni,...,ng) € a. (60)

When the length scale of support S; at u; is taken into account, the Taylor series expan-
sion in Eq.57 can be written as

ni ng
ri...r
) § 1 d
'U/j = U; hnl_‘_m_i_nd <

(n1,...,nq)€aly *

ritrhd n
=ut D0 e U, 00" (61

1

hﬂ1+...+nd
7

) n+1
nqil...ng! uz’m'”"d> +0(r"™)

(n1,...,nq)€Q

15



where h; is the characteristic length of S;, and

h’(l1+-..+nd
7

muiﬂ’bl---nd (62)

h

1,MN1...Ng

Let p?, OMu; and d,u; denote the list of the flattened polynomials, scaled partial deriva-

tives, partial derivatives, respectively, based on multi-index notation o in Eq.59,

Ty rit.rhd rl
p;l_ (ﬁ77ﬁ’7h_;),r (633)
82162‘ - (uzh:(],..h s uzh,nl...ndv e uZnA..O)T (63b)
aozu’i = (ui,(]ul? vy Uimg.ngs -+ ui,n...())T- (630)
qui and O,u; are related by

hm-l—u.-&-nd hr
8aui = Hi_IE?Zui, with .ILIZ = dlag [hz, ey Ty ey —Z} (64)

nil...ng! n!

where diag|ay, ..., a,] denotes a diagonal matrix whose diagonal entries starting in the upper
left corner are aq, ..., a,. Therefore, the Taylor series expansion with u; being moved to the

left side of the equation can be written as
ui; = (Ohu;) 'pl,Vj € S; (65)

where u;; = u; — u;. Integrating u;; with weighted coefficient w(r)(p?)" in support S;, we

obtain
[ e v, = @™ [ wirp) e @) av,
S;
0uZTH/ ® (p))" av; (66)

where w(r) is the weight function. Thus, the nonlocal operator d,u; can be obtained as

(‘%ui = Hll(/
S

with

—1
w('r')p? ® (p?)T de) /S w(r )uwp] dV; = K; - / pjulj dV;

(67)

%

= H( [ wripl e o)) av) (68)
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The variation of 5aui is
Dobu; = K; - / )P} (du; — du;) dV; (69)

In the continuous form, the number of dimensions of ddu; is infinite and a discretization is

required. After discretization of the domain by particles, the whole domain is represented
by
N
Q=Y AV (70)
i=1

where 7 is the global index of volume AV; and N is the number of particles in ). Particles

in §; are represented by

Si={J1s s os i} (71)

where ji, ..., Jk, ..., Jn, are the global indices of neighboring particle 7 and n, is the number

of neighbors of 7 in ;. The discrete form of Eq.67 and its variation are

JjES;
Oabu; = K- Y duzw(r;)plAV; = Kipl,.6Au, (72b)

JES;

with
-1
K, = H' (Y wir)pl e @)"Av;) (73a)
JES;

Pl = (w(r; Ph AV, w(rs, )Pl AV, ) (73b)
Aui = (uiju coey Wijp s voey Ul]nl)T (73(3)

The nonlocal operator provides all partial derivatives with maximal order for a single index
up to n. The set of derivatives in PDEs of real application is a subset of the nonlocal
operator. Together with the weak formulation (weighted residual method or variational
principles (i.e.[43])), Eq.72a can be employed to solve many linear (nonlinear) PDEs. Eq.72a

can be written more concisely as

5aui = Kz‘PZz‘AUz‘ = B,u; (74)
17



with B,,; being the operator matrix for point ¢ based on multi-index o

_(]-7 ) 1>npK7,pZ)z

B, = (75)
Kp},
wi = (U, Wy, Uy, -, ) (76)
where (1,---,1),, K;p; is the column sum of K;p!,, n, is the length of a/j. The operator

matrix obtains all partial derivatives of maximal order less than || + 1 by the nodal values
in the support. For real applications, one can select the specific rows in the operator matrix
based on the partial derivatives contained in the specific PDEs. Besides considering the
functional for the physical problem, the functional for the nonlocal operators should be
considered explicitly. The energy functional for all nonlocal operators is defined as [42]

Filw) =" w(r) (uy — (p2)70hu:) AV, (77)

JES;
Based on Eq.72a, F;(u) can be simplified as

u) = Z w(r)ul;AV; — Au] (pl,) (Z w(r)p!(p) )TAV> pf;iAui

JES; jeS:
=Au] (dlag[ w(r;,)AVj,, . w(r;, AV, | — (p)) (Zw r)p! p])TAV> lpfm)Aui
jeSi
:AuiTM,-Aui (78)
with
M; = diag[w(rj,)AVj,, .., w(r;, JAV, | - (pZi)T(Zw('f‘)p?(p?)TA@ Tph (19)
JES;

Apparently, M; is a symmetric matrix. The expression of F;(u) is quadratic, and its Hessian

matrix can be extracted as

T
Kl = 2 (80)

i | —v; M,
where v;(j) = Y2, M;(j, k) is the sum of the row of M;; the first row (column) denotes

the entries for point ¢, while the neighbors start from the second row (column), pp, is a
penalty coefficient and m; the normalization coefficient given by m; = >, _s w(r)r - rAV}.

The reader is referred to [42] for more details of the NOM.
18



4.2. Newton-Raphson method

The governing equations and boundary conditions in Eq.50 are quite complicated. The
highest continuity in @ is C* and the gradient and Hessian matrix of the functional on
boundary 90} are cumbersome. Note that NOM does not satisfy the Kronecker-Delta
property, and the order of NOM should be at least C® in order to satisfy the Dirichlet
boundary conditions on 9%, where the continuity order in P is C5. Therefore, we employ
the penalty method to enforce both Dirichlet boundary conditions and the normal Dirichlet
boundary conditions. The equivalent energy functional of second-gradient elasticity then
becomes

f:/gb(u,Vu,V2u,V3u) dV+/ a(u—a) - (u—u)dS — P.udS
Q 900, 099,

+/ ax(Vou — Vou) o (Vyu — Viou) dS — Q:V,udS (81)
o0k, o0},

where «q,as are penalty parameters. One advantage of the penalty method is that the
highest order of partial derivative is 4 for third-gradient elasticity, while the formulation
based on the modified variational principle requires C7 continuity. We neglect the terms on
002 and 0Q3% for simplicity. The differential operators in ¢ of E? elasticity with unknown
)T

u = (u,v)" in material coordianate X = (X,Y") are

Uy = <U,Y, Vy,UXx,Vx,Uyy,Vyy,UXy,VXxy,UXX,UXXx,Uyyy,VyYY,
UXxyy,VUxyy, U XXy, VxXXxy,Uxxx, VXXX, Uyyyy,VyyYyYy, U Xyvy,

T
UVXYYY,UXXYY,V,XXYY; U XXXY,V,XXXY>UXXXX, U,XXXX) (82)
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The differential operators in F of E® elasticity with unknown w = (u,v,w)? in material

coordianates X = (X,Y,Z) are

0U3q = (u,z, Vz, Wz, Uy, Vy,Wy,Ux,Vx,Wx,Uzz,V2z2z,Wzz,Ubyz,Vyz, Wyz,UyYy,VyYy, WYY,
Uxz,Vxz,Wxz,UXy,VXy,Wxy,Uxx,Vxx,Wxx,Uzzz,V.222,Wzzz,Wyzz,Vyz2,WyYZ2,
Uyyz, Vyyz, Wyyz,byyy,VyyYy,WyYyYy,UXx2z2, VX272, WXx72,bXxyz,VXyz, WXxyz, XYY,
VXyy,Wxyy,UXxxz,VXxX7z,WxxXz,UXXY,VXXy,WxXxy, U XXX, VXXX, WxXXx,W 2727
V2222, W 2222, Uy 7722, Vy222, Wy z22,UyYZZ,VyyZZ,WyYZZ,UYYYZ, VYYYZ, WYYYZ
yUYYYY ,Vyyyy,WyyYY, , U X222,V X222, W X222, UXYZZ, VXY ZZ,W XYZZ  UXYYZ;VXYYZ,
yWXYYZ, UXYyYY,UXyYY,WXYyYY,UXX22,VXX22,WXX77Z, U XXYZ,VXXYZ,WXXYZ, UXXYY,

’

VXXYY,WXXYY,UXXXZ,VUXXXZ, WXXXZ,UXXXY,VUXXXY,WXXXY,UXXXX,VUXXXX, w,XXXX)

(83)

In NOM, the differential operators can be written as U, = B,U, s € {2d,3d}, where
B, is the operator matrix and U is the vector form of all unknowns in the support. The

residual vector and tangent stiffness matrix for one particle can be obtain as

dp  0QU) 0¢ r 00
R, = = =B ——— 84
oUu oUu 0(oU) a(oU) (84)
OR 0?¢
K,=_—-=B" _—"_B 85
ou o(0U)? (85)
The explicit forms of a(%%) and 8(8;[‘}5)2 can be obtained by softwares such as Mathematica

[53] allowing symbolic operations. For simplicity, we omit these lengthy expressions in the
paper. However, the code will be made available. The global tangent stiffness matrix for
the functional in domain €2 can be expressed as
Ro= ) RAV, Ko=) KAV (86)
AV;EQ AV;EQ
The global tangent stiffness matrices (e.g. Kaqg, Koor) and residuals (e.g. Raqo , Ryo1 )
for functional on boundaries 9Q%,, 901, can be obtained in the same manner. The Neumann

boundary condition on Q% can be applied directly on the particles. The moment boundary
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condition on 9} can be enforced by calculating the residual

_ Iy 0(0Uy) 5¢N
RBQ}V—AS%{;W T Z BL N AS, (87)

where ¢ = Q :V,uand OUy = V®u = ByU; By are constructed by selecting the first

Opn

2 rows or 3 rows of B in 2D or 3D, respectively; RIGLI)

can be obtained by Mathematica

[53]. Then, the global tangent stiffness matrix and residual are

K = KQ + KQQOD ‘I‘ KBQ}D (89)

With the global residual and tangent stiffness available, a standard Newton Raphson

method can be used to find the solution.

5. Numerical examples

In this section, we present several representative numerical examples to study the prop-
erty of the E" elasticity theory. The setup of the 2D/3D examples and the associated
boundary conditions are outlined in Fig.3. The material parameters and length scales will

be given in the subsections.

5.1. Convergence of strain energy in E® elasticity

The first example tests the strain energy distribution of E? elasticity for different dis-
cretizations. The material parameters are elastic modulus £ = 30 GPa and Poisson’s
ratio v = 0.3. Plane stress conditions are assumed. The internal length scales are set to
ly =1y = I3 = 0.05. The geometry and boundary conditions are depicted in Fig.3(a). The
left side of the plate is fixed in all directions and a uniform tension load of p = 1 GPa-m
is applied on the right side, which results in a moderate deformation. Different discretiza-
tions such as 402,602, 802,962, 1202, 1602, 200? particles are used to study the distribution
of the strain energy of different orders. The engineering strain is approximately 0.0288 as

depicted in Fig.4(a). The distribution of total strain energy density on each particle is
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Figure 3: The setup of the 2D plate and 3D plate and boundary conditions.
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given in Fig.4(b). The maximal strain energy density occurs around the corners. The total
strain energies on different strain gradient orders can be found in Fig.5. With increasing
particle number, the energies of different levels converge. The strain energy is dominant
while the higher order energies tend to decrease with increasing gradient orders. Indeed, the

deformation under pure tension load is "uniform” for this numerical example.

0.0279 1.665x107

7
0.0248 1.620x10

0.0217 1.575x107
1.530x107

0.0186 1.485x107

0.0155 1.440x107
0.0124 1.395x107

0.0093 1.350x107

7
0.0062 1.305x10

0.0031

Figure 4: (a) Deformation in z-direction, scaled by 10 times and (b) the distribution of total strain energy

density for discretization of 120% particles.

5.2. 2D plate with uniform deformation

The second example tests the influence of E" gradient elasticity subjected to a uniform
load; E°, B!, E? elasticity theories are implemented. The geometry and boundary conditions
are illustrated in Fig.3(a). A plate with dimensions of 1x1m? is discretized into 812 particles.
The material parameters are elastic modulus £ = 30 GPa and Poisson’s ratio v = 0.3. The
internal length scales are I; = I, = 0.05. The left side of the plate is fixed in all direction
and the right side is subjected to a uniform tension load of p = 1 MPa/m. Fig.6(a) shows
that the displacement based on higher order elasticity theory is identical to conventional
elasticity for uniform deformations since the higher order strain components are quite small

such that their contribution to the energy density can be neglected. However, the higher
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order terms make the deformation smoother as shown in Fig.6(b). This indicates that the
higher order gradient elasticity should be tested with in-homogeneous deformations.
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Figure 6: (a) Displacement in z-direction and (b) strain in z-direction for particles on middle horizontal

line (Blue line in Fig.3(a)).

5.3. 2D plate subjected to point force

Let us test the capability of gradient theory for point loads. We adopt the dimensions of
the plate and its material parameters from the previous subsections. However, one particle
in the middle of the right side boundary of the plate is subjected to a point force of 1000
N. The geometry and boundary conditions are depicted in Fig.3(b). The plate is discretized
into 81x81 particles. E' — E* elasticity theories are considered. The deformations of the
plate for E', E? E3, E* elasticity can be found in Fig.7. Obviously, gradient elasticity can
'withstand’ point loads. The higher order gradient elasticity has a smoother displacement
field compared with gradient elasticity. Comparisons of the displacement in z-direction
of particles on the right side boundary (i.e.the red line in Fig.3(b)) are plotted in Fig.8.
The first-order and second-order derivatives of the displacement in z-direction of particle
are shown in Fig.9. The derivative of the displacement in E' elasticity changes sharply,
in contrast to the smooth transition of the displacement gradient in higher order gradient

elasticity.

25



4.14x1078
3.68x1078
3.22x1078
2.76x1078
2.30x1078
1.84x1078
1.38x108
9.20x1070
4.60x1079

4.14x1078
3.68x1078
3.22x1078
2.76x1078
2.30x1078
1.84x1078
1.38x1078
9.20x1070
4.60x1079

()

Figure 7: Displacement in z-direction of the plate with deformation scaled by 107 times for (a) E! elasticity,

(b) E? elasticity, (c) E? elasticity and (d) E* elasticity.
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Figure 8: The deformation of all particles on the red line in Fig.3(b).
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5.4. Plate with a hole: influence of length scales

This example deals with a plate with a hole of radius 0.2 m located at its center. The
geometry and boundary conditions are depicted in Fig.3(c). The same material parameters
as before are used. The plate is discretized into 81x81 particles and then the particles falling
inside the circle are removed. With different length scales, the displacement in z-direction
of all particles on the right boundary of the plate based on (a) E! elasticity and (b) E?
elasticity are shown in Fig.10. Higher length scale parameters can significantly reduce the
stress concentration induced by the hole. The gradient of the displacement in z-direction
of B! elasticity is shown in Fig.11, which that a larger I; smoothes the strain field. The
displacement gradient in z-direction of E? elasticity can be found in Fig.12. The larger [;,

the smaller the strain field.
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Figure 10: The displacement in z-direction of particles on right side boundary of the plate based on (a) E!
elasticity and (b) E? elasticity.

5.5. Large deformation of 2D plate with a hole

Again, we adopt the material parameters and plate dimensions from the previous ex-
ample and study the deformation of a 2D plate with a hole based on E™ elasticity, with
n=(0,1,2,3,4,5). The geometry and boundary conditions are illustrated in Fig.3(c). The
plate is discretized into 81x81 particles and the particles in the hole are removed. A

shear load p = T GPa-m, where T" € [0, 3] is the time step, is applied on the right side
28
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Figure 11: 2% distribution based on E' elasticity for (a) {; = 0.05, (b) [4

() I1 = 0.5, (f) I = 2.5.
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Figure 12: g—; distribution based on E? elasticity for (a) Iy = Iy = 0.05, (b) [; =l = 0.1, (¢) l; = I = 0.025.
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boundary of the plate. The length scales are selected as I} = Iy = 0.05 for E? elasticity,
li =1y =13 = I, = 0.05 for E* elasticity and [} = I, = I3 = I, = I5 = 0.05 for E° elasticity.
The displacements at step T = 1 are plotted in Fig.13, where E° elasticity has the largest

deformation and the deformations by E?, £3, E*, E® elasticity are similar.

(a) (b) (c)
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B 0.256 - 0.224 - 0.208
0.224 0.196 0.182
0.192 0.168 0.156
0.160 0.140 0.130
0.128 0.112 0.104
0.096 0.084 0.078
0.064 0.056 0.052
0.032 0.028 0.026

(d) (e) )

0.234 0.234 0.234
- 0.208 - 0.208 BS-0.208
0.182 0.182 0.182
0.156 0.156 0.156
0.130 0.130 0.130
0.104 0.104 0.104
0.078 0.078 0.078
0.052 0.052 0.052
0.026 0.026 0.026

Figure 13: The deformations of plate at T = 1 for (a) EY elasticity,(b) E* elasticity,(c) E? elasticity,(d) E3

elasticity,(e) E* elasticity and (f) E° elasticity, respectively.

Fig.14 shows that the displacement in y-direction of particle on the bottom line (e.g.
the blue line in Fig.3(c)). It can be seen that the higher order gradient theory has smaller
deformation. The difference becomes smaller when the order of gradient elasticity increases.

Contour plots of displacement gradients for E?, ..., E° elasticity are plotted in Fig.15 and
Fig.16. Higher order elasticity exhibits a very smooth displacement gradient. The gradient
of the displacement field for hyperelasticity (E° elasticity) is not smooth around the internal
line. This is due to the fact that the first order NOM is used, which is continuous in the
displacement but discontinuous in its derivative.

Although the deformations for different elasticity theories at 7' = 1 are similar, the final
converged deformations are different. The final load level of the plate occurs approximately
at Ty = 0.96875, T = 2.0, T, = 2.25, T3 = 2.5, Ty = 2.5, T5 = 2.5 for E°, E', ..., E® elasticity,
respectively. The final configurations of the plate can be found in Fig.17. The displacement
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Figure 14: The displacement in y-direction of all particles on right side boundary of the plate with load

level T = 1, where the lines in (b) are magnified from (a).
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Figure 15: g—;} at T =1 for E°, ..., E® elasticity.
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Figure 16: g—;i at T =1 for E°, ..., E® elasticity.

in y-direction for particles on the right side of the plate is depicted in Fig.18

5.6. Large deformation of 3D plate subjected to line load

Finally, we present a large deformation example in 3D, i.e. a 3D thick plate based on E3
elasticity. The geometry and boundary conditions are depicted in Fig.3(d). The particles in
the red segment are fixed in all directions. A line force density of p = 10® N/m is applied
on the particles located on the line. The load level T increases from 0 to 3. The differential
operators in 3D E? elasticity are given in Eq.83. The plate with dimensions of 1 x 1 x 0.2 m?
is discretized into 41 x 41 x 9 = 15129 particles. The support of each particle consists of
124 nearest neighbors. The material parameters from the previous examples are adopted.
The length scale parameters are selected as [y = [, = I3 = 0.05. The final deformation is
plotted in Fig.19 with the displacement fields are shown in each sub-figure. The displacement
gradient fields are plotted in Fig.20. The displacement second-gradient fields are plotted in
Fig.21.
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(d)

Figure 17: The converged final deformations of plate for (a) E elasticity,(b) E! elasticity,(c) E? elasticity,(d)
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Figure 19: The displacement field of (x,y, z) directions in deformed configuration.
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6. Conclusions

We have proposed an objective energy functional for finite deformation higher order gra-
dient elasticity. The energy functional is based on the setting of the second Piola-Kirchhoff
stress which is invariant under rigid body transformations. More specifically, the geomet-
ric nonlinear higher order gradient elasticity theory is formulated on the gradients of the
right Cauchy Green tensor. The general form of higher order gradient elasticity may contain
thousands of material parameters and we proposed a simplified version of gradient elasticity.
Such simplification reduces the number of material parameters from 10 thousands to less
than 10. A small number of material parameters can greatly simplify the experiment mea-
surement and numerical implementation. The framework of gradient elasticity also allows
for other forms of simplification of material parameters.

We employed the nonlocal local operator method and Newton Raphson iteration method
to find the numerical solution of higher gradient elasticity. The properties of gradient elas-
ticity are studied by a series of numerical experiments. The numerical tests show that
gradient elasticity can sustain point/line load without stress singularity. The mechanical
response greatly depends on the internal length scales of gradient elasticity. Larger internal
length scale induces a smaller and smoother deformation. Higher order gradient elasticity
is numerically more stable and allows for larger ultimate load for the same structure.

In the next stage, more physics-related research including the calibration of material
parameters by experiments and numerical simulation, and the size effect, surface effect in
metamaterials and gradient elasticity will be pursued. Some outlooks based on current
research include, for example,

1. The higher order gradient elastoplasticity theory [31] and its numerical implementation.
Current research is restricted to elasticity with finite deformation and it cannot be applied to
a dissipated system involving permanent deformation or irreversible process. The extension
of higher order elasticity to higher order plasticity can broaden the range of plasticity theory.
2. More clear relationship between metamaterial and gradient elasticity is expected [54, 55].

One salient feature of gradient elasticity is the micro-structure, which is essential to the
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theory of metamaterials as well. Direct simulation of micro-structure requires tremendous
computer power. Gradient elasticity circumvents these difficulties by introducing certain
internal length scales, which however require more sophisticated measurement.

3. The wave propagation analysis of gradient elasticity. Gradient elasticity has the capability
to account for interesting phenomena such as size effect, surface effect and nonlocal effect.
These features may give rise to some abnormal physical phenomenon, which can be exploited

to design some smart devices.

Appendix A. Symmetry of higher order tensor

For the 4th-order elasticity tensor, the symmetry can significantly reduce the number
of material parameters. The symmetry of the Cauchy stress tensor (o;; = o0 and the
generalized Hooke’s laws (0;; = Cjjper) implies that Cjji = Cjiy. Similarly, the symmetry
of the infinitesimal strain tensor implies that Cjji; = Cyji,. These symmetries are called the
minor symmetries

If in addition, since the displacement gradient and the Cauchy stress are work conjugate,

the stress—strain relation can be derived from a strain energy density functional (U), then

- Oz R De;j0ck

(A.1)

Uij

The arbitrariness of the order of differentiation implies that Cjjp = Chyj.

The stiffness matrix C' satisfies a given symmetry condition if it does not change when
subjected to the corresponding orthogonal transformation, which may represent symmetry
with respect to a point, an axis, or a plane.

According to [56, 57], the orthogonal transformation of a tensor of any order can be

written as

T(M) = (Q* M) k.= QipQjqQurr - M. pgr.. (A.2)

where @ is an orthogonal matrix given by

O(n, R) = {Q € GL(n, R)|QTQ = QQ" = I}, (A.3)
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with GL(n, R) being the set of all real n X n matrices and I the identity matrix.

The symmetry of certain orthogonal transformation of a tensor requires
QM = M, with Q € O(n, R). (A.4)

The common orthogonal transformations in 3D include the reflection, rotation. The

transformation matrices for symmetry planes are

-100 1 0 0 10 0
Ai=|0 1 0|, A=|0 -1 0|,A=1(01 0 (A.5)
0 01 0 0 1 00 —1

Rotation matrix in 3D

1 0 0 cosf 0 sinéd cosf) —sinf 0
R.(0) = |0 cosf —sinf| R, (0)= 0 1 0 |,R.(0)=|sind cosf 0
0 sinf cosd —sinf 0 cosd 0 0 1

(A.6)

The general rotation matrix R can be written as

R = R.(a) Ry(3) Ru(7)

The coordinate transform of a vector in matrix and tensor notation is

v=Q v and v; = A\ijv; (A.7)

)

The coordinate transform of a tensor in matrix and tensor notation is

0', = Q O - QT and O'/ n — )\mi>\njgij (A8)

The coordinate transform of a 4th-order tensor is
C'=Q-Q-C-Q"-Q".Cli; = MimNjnMeoApClranop (A.9)
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The coordinate transform of a 6th-order tensor is

H' = Q-Q-Q H- QT ) QT : QT7 z{jklmn = /\io)‘jp/\kq)‘lrAms)‘ntHOqust (A~10)

Solving Eqs .A.9,A.10 by Mathematica [53], we can obtain the independent variables in
high order tensor.

There are 3% = 729 terms in H. The Minor symmetry reduces H into 171 independent
terms.

The orthotropy requires H' = H,C’ = C for three reflection symmetries A, Ay, As.
The case of orthotropy (the symmetry of a brick) has 51 independent elements.

The isotropy property requires H' = H,C’' = C for any rotation. This requirement

reduces the number of independent terms in H' from 171 to 5.

Appendix B. Matrix Form of strain gradient energy by Viogt notations

The tensor form of higher order tensor contains many repeated terms when symmetry
property is considered. In terms of numerical implementation, it is more convenient to use
the matrix form than to use tensor form. In conventional mechanics, the Viogt notation
is an efficient method to formulate the matrix form. Let us take the strain gradient linear
elasticity for an example. The other higher order tensor can be formulated in the same

manner. The material constitutive for couple-stresses can be written as
— =
Vo =HVe, 04k = hijrimnEimn (B.1)

The strain-gradient energy function is
1 1 l=—7p, =
F = 5 TiikEijk = §€ijkhijk1mn€lmn = §V€THV€ (B.2)
where €;;x, 0 are defined as
aéjk aO'jk
Cijk = P Oijk = D
1 1

The vectorial forms of couple stress and strain gradient can be written as
—
Vo = (0111,01227013370123,0113,0112,0211,0’222,02337022370213,021270311,032270’333703237031370312)

(B.4)
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—
Ve = (€111, €122, €133, 26123, 26113, 2€112, €211, €222, €233, 26223, 26213, 2€212, €311, €322, €333, 26323, 26313, 2€312)

(B.5)
Based on Viogt rotations
i =11 22 33 23,32 13,31 12,21
R \ U (B.6)
a =1 2 3 4 5 6
we write the couple stress and strain gradient as
Ocqy Odo,,
i — y i — B.7
€ a&:z “ axz ( )
Pijrimn — Niaip (B.8)

where «, 8 are the Viogt notations of jk and mn, respectively.

Then the vectorial forms of couple stress and strain gradient can be written as

—
Ve = (6117 €12, €13, 2€14, 2€15, 2€16, €21, €22, €23, 2€24, 2€95, 2€96, €31, €32, €33, 2€34, 2€35, 2636)

(B.9)

—
Vo = (0'1170'1270'1370'14;0157(716a‘721a‘7227023;0'2470'25702670'3170327033703470357036> (B.lO)

Based on the symmetry calculation in Appendix Appendix A, the matrix form of isotropic
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gradient elasticity is

Hiso = {{h1111, h1112, P1112,0,0,0,0,0,0,0,0, h1126,0,0,0, 0, h1126,0} (B.11)
{h1112,-h1111 + 2112 + 4hagie, Paiia-2hie2s3, 0,0,0,0,0,0,0,0, Ayiii-hiiie-hiige-2hieis, 0, 0, 0,0, higas, 0}
{1112, hi11a-2Ra623, -ha11n + 2h112 + 4hi616, 0,0, 0,0, 0,0,0, 0, hyg2s, 0, 0,0, 0, hiii1-hiria-hii26-2hiers, 0}
{0,0,0,-h1111+h1112+2h1616+h1623,0,0,0,0,0,0,h1111-h1112-h1126-h1616-R1623,0,0,0,0,0,0,h1111-h1112-h1126-h1616-h1623 }

{0,0,0,0, h1616,0,0,0,0, h1126-h1623, 0, 0, hi111-Ri112-Pi126-2hi616, P1623, h1126, 0,0, 0}

{0,0,0,0,0, higie, h1111-h1112-h1126-2P1616, P1126, Pi623; 0,0,0,0,0,0, hiig-hig2s, 0,0}

{0,0,0,0,0, h1111-h1112-P1126-2h1616, -P1111 + 2R1112 + 4Ra616, P12, R1112-2ha623, 0,0, 0,0,0, 0, hygos, 0,0}
{0,0,0,0,0, h1126, Pa112; P11t P12, 0,0,0,0,0,0, Az, 0,0}

{0,0,0,0,0, higas, h1112-2R1623, ha112, -ha111 + 2R1112 + 4hi616,0,0,0,0,0,0, hi111-hi112-Pi126-2R1616, 0, 0}
{0,0,0,0, h1126-P1623, 0, 0,0, 0, higis, 0, 0, Pagas, Pai11-Paii2-hii26-2ha616, haizs, 0,0,0}
{0,0,0,h1111-h1112-h1126-h1616-h1623,0,0,0,0,0,0,h1112+2h1616+h1623,0,0,0,0,0,0, h1111-h1112-h1126-h1616-h162s

{h1126, hi111-hi1i2-hi126-2hae16; Pae2s; 0, 0,0, 0,0,0,0,0, ke, 0,0, 0,0, -Rigos, 0}

{0,0,0,0, hi111-P1112-h1126-2h1616, 0, 0, 0,0, higa3, 0, 0,-hi111 + 2hi112 + 4higis, hi112-2hae23; P12, 0,0, 0}
{0,0,0,0, hig23,0,0,0,0, hy111-hi112-h1126-2Ra616, 0, 0, hi112-2Ra623, -Rain + 2h1112 + 4hies, hi112, 0,0, 0}
{0,0,0,0, h1126,0,0,0,0, hy126, 0,0, hy112, P11z, P11, 0,0,0}

{0,0,0,0,0, h1126-h1623, 1623, h1126; Pi111-ha112-hi126-2hie1s, 0, 0,0, 0, 0,0, higis, 0, 0}

{h1126, hi623, ha111-ha112-ha126-2h1616, 0,0, 0, 0,0, 0, 0,0, -Ry623, 0, 0,0, 0, hygis, 0}

{0,0,0,h1111-h1112-h1126-P1616-h1623,0,0,0,0,0,0,h1111-h1112-h1126-h1616-P1623,0,0,0,0,0,0,h1112-h1111 +2h1616+h1623}}
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The matrix form of H°" is written as H " of 18 x 18

HOorth ={{h1111, 1112, P1113,0,0,0,0,0,0,0, 0, h1196,0, 0,0, 0, hy135,0} (B.12)
{hi112, hi212, h1213,0,0,0,0,0,0,0,0, ~y22, 0,0, 0,0, hia3s,0}
{hi113, hi213, 1313, 0,0, 0,0,0,0,0,0, A3z, 0,0,0, 0, hi3zs,0}
{0,0,0, h1414,0,0,0,0,0,0, hi425,0,0,0,0,0,0, hi36}
{0,0,0,0, h1515,0,0,0,0, hys24, 0,0, hyssi, husse, husss, 0,0,0}
10,0,0,0,0, higie, Pis21, Pas2e, Pis2s, 0,0,0,0,0,0, higssa, 0,0}
10,0,0,0,0, higar, haizt, haiza, hoi2s, 0,0,0,0,0,0, hoyzs, 0,0}
{0,0,0,0,0, hig, hoi2o, hosoa, ho223, 0,0,0,0,0,0, hopss, 0,0}
{0,0,0,0,0, hig23, ho123, hosas, haszs, 0,0,0,0,0,0, hozsy, 0,0}
{0,0,0,0, h1524,0,0,0,0, hosza, 0,0, hoasy, hoasa, hoass, 0,0,0}
{0,0,0, h1425,0,0,0,0,0,0, hasas,0,0,0,0,0,0, hosse }

{h1126, h1226, h1326,0,0,0,0,0,0,0,0, hogas, 0,0, 0,0, hagss, 0}
{0,0,0,0, 21531, 0,0,0,0, hoszr, 0,0, hziz1, hsise, hsiss, 0,0,0}
{0,0,0,0, h532,0,0,0,0, hoaza, 0,0, hizis, hizaso, hisass, 0,0,0}
{0,0,0,0, hy533,0,0,0,0, hoass, 0,0, k3133, hizass, hisssz, 0,0,0}
{0,0,0,0,0, higsa, hoi3a, hossa, hosss, 0,0,0,0,0,0, hsazs, 0,0}
{h1135, Pa2ss, hisss, 0,0,0,0,0,0,0,0, haess, 0, 0,0, 0, hzsss, 0

{07 07 07 h14367 Oa 07 07 07 07 07 h25367 Oa 07 07 07 Oa 07 h3636}}
The independent terms in H°™" are

{h11117 h1112; h1113; h11267 h11357 h12127 h1213; h12267 h1235, h1313;
h13267 h13357 h14147 h14257 h1436a h15157 h1524, h15317 h15327 h15337
h16167 h'16217 h16227 h16237 h16347 h21217 h21227 h21237 h21347 h22227
h22237 h22347 h23237 h23347 h2424, h24317 h2432, h24337 h’25257 h25367

h26267 h26357 h31317 h31327 h3133a h3232> h3233a h33337 h34347 h35357 h3636} (B13)
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The independent terms in H**° are

{hlllla h11127 h1126a h16167 h1623} (B14)

In order to maintain a positive strain energy density for any deformation, it is required that

the matrix H be symmetric and positive definite.
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