Highly accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson Simulations - Archive ouverte HAL Access content directly
Journal Articles Journal of Computational Physics Year : 2021

Highly accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson Simulations

Abstract

In this paper, we study a high accurate monotonicity-preserving (MP) Semi-Lagrangian scheme for Vlasov-Poisson simulations. The classical Semi-Lagrangian scheme is known to be high accurate and free from CFL condition, but it does not satisfy local maximum principle. To remedy this drawback, using the conservative form of the Semi-Lagrangian scheme, we recast existing MP schemes for the numerical flux in a common framework, and then substitute the local minimum/maximum by some "better" guess, in order to avoid as much as possible loss of accuracy and clipping near extrema, while keeping the monotonicity on monotone portions. With the limiter, on the one hand, the scheme keeps the good properties of the unlimited scheme: it is conservative, free from CFL condition and high accurate. On the other hand, for locally monotonic data, the monotonicity of the solution is preserved. Numerical tests are made on free transport equation and Vlasov-Poisson system to illustrate the robustness of our method.
Fichier principal
Vignette du fichier
SL_limiter_revR2chang_HAL.pdf (5.82 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03126595 , version 1 (31-01-2021)
hal-03126595 , version 2 (17-08-2021)

Identifiers

Cite

C Yang, Michel Mehrenberger. Highly accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson Simulations. Journal of Computational Physics, inPress, ⟨10.1016/j.jcp.2021.110632⟩. ⟨hal-03126595v2⟩
78 View
40 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More