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Abstract

In this paper, we study a highly accurate monotonicity-preserving (MP) Semi-
Lagrangian scheme for Vlasov-Poisson simulations. The classical Semi-Lagrangian
scheme is known to be highly accurate and free from CFL condition, but it does
not satisfy local maximum principle. To remedy this drawback, using the con-
servative form of the Semi-Lagrangian scheme, we recast existing MP schemes
for the numerical flux in a common framework, and then substitute the local
extremum by some ”better” guess, in order to avoid as much as possible loss of
accuracy and clipping near extrema, while keeping the monotonicity on mono-
tone portions. With the limiter, on the one hand, the scheme keeps the good
properties of the unlimited scheme: it is conservative, free from CFL condition
and highly accurate. On the other hand, for locally monotonic data, the mono-
tonicity of the solution is preserved. Numerical tests are made on free transport
equation and Vlasov-Poisson system illustrating that the limited scheme is more
diffusive compared to cubic splines but has better L1 conservation, which is pri-
marily an advantage for problems with sharp gradients.

Keywords: Monotonicity-preserving Scheme; Semi-Lagrangian scheme;
Vlasov-Poisson Simulations

1. Introduction

The Vlasov-Poisson system describes the evolution of charged particles un-
der a self-consistent electric field. One important application of the Vlasov-
Poisson system is in the study of the controlled fusion. The Vlasov-Poisson
system has a number of conservation properties that need special attention
when developing numerical methods. Ideally, we want numerical method to
retain the exact invariants in numerical methods. However, when it is not
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possible to keep them all, they can be used to monitor the validity of the sim-
ulation by checking accuracy of these invariants. Many attempts have been
made for solving Vlasov-Poisson system, including classical discretizations as
finite difference methods [2], finite element method [60, 47, 1], finite vol-
ume method [32, 33, 18, 54] , spectral method [42], discontinuous Galerkin
methods [37, 22, 12, 11, 59, 50, 39], statistical based method as particle-in-cell
method [14, 53, 24, 34, 23, 19]. There is also another important category named
Semi-Lagrangian methods [46, 4, 20, 44, 43, 52, 9, 55, 5, 30, 31], which is pop-
ular thanks to its good precision and as it is free from time step limitation.
In this paper, we will focus on designing a Semi-Lagrangian method for the
Vlasov-Poisson system.

The Semi-Lagrangian methods use the characteristics of the scalar hyper-
bolic equation, along with an interpolation method, to update the unknown
from one time step to the next. The classical Semi-Lagrangian method with
high order interpolation can generate new extrema, violate the monotonicity
and develop numerical oscillations.

Some remedies have been proposed. Conservative Semi-Lagrangian meth-
ods were introduced by using flux formulation [20], permitting to add filters to
impose monotonicity or positivity, while keeping the conservativity, which turns
out to be satisfied for the current applications in this paper (constant advec-
tion equation with periodic boundary conditions). Such design was essentially
developed by changing the derivatives at the cell edges and a full monotonic or
bounded preserving solution was obtained, in the framework of Hermite repre-
sentation of the solution, that is locally a polynomial of degree ≤ 3. The case
of higher order reconstructions is more complex (see [27]), as one has to have
conditions for a polynomial to be monotone or positive. A nearby solution is the
positive and flux conservative (PFC) scheme that was earlier developed [35], and
a local variant has been proposed by Umeda [51], and then a generalization has
been performed for polynomials of degree ≤ 4 [52] instead of degree ≤ 3. An-
other strategy is based on a weighted essentially non-oscillatory (WENO) type
reconstruction [44, 55], typically with polynomials of degree ≤ 5. However,
WENO type reconstruction is too much dissipative for long term simulation as
shown in Section 4. The key point of WENO type method is to find ”optimal”
non-linear combination weights. In contrast, we will position our design in the
framework of monotonicity-preserving (MP) constraint, that is applied directly
on classical interpolations and the modification is directly on the numerical flux
[48], which removes the problem of dealing with high order polynomials and
corresponding criteria to get monotonicity or positivity.

Suresh et al. [48] proposed such a limiter for numerical flux, which can
retain high accuracy and in the meantime preserves monotonicity, so that the
scheme can efficiently remove spurious oscillations. The idea is to distinguish
automatically monotone portion and extrema portion of solution. On the one
hand, for monotone solution, the limiter preserves monotonicity of the solution,
on the other hand, it provides enough relaxation space to retain high accuracy
of solution. However, this limiter has limitation of Courant-Friedrichs-Lewy
(CFL) condition. It has been applied recently to the Semi-Lagrangian method
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and for the Vlasov-Poisson system [49]. Note also that an extension work of [48]
has been made [21] to give more relaxation space.

We refer also to the recent paper [45] for some complementary references on
the numerical resolution of the Vlasov equation by Semi-Lagrangian type meth-
ods focussing precisely on removing spurious oscillations, which is the concern
of our paper.

In this paper, we focus on developing a new limiter for Semi-Lagrangian
method. We first reformulate the existing MP limiters in a common framework,
that is the MP constraint mentioned in [28], then we substitute local extremum
by some ”better” guess extremum. In this framework, we can easily compare
among the existing limiters and propose our best choice. In numerical tests, we
use L1 norm invariant to estimate growing of spurious oscillation and L2 norm
invariant for dissipation of the solution.

The outline of this paper is following. The highly accurate Semi-Lagrangian
scheme is revised in Section 2. The construction for left flux and right flux is
presented respectively. Some symmetry argument between left flux and right
flux is also explained here. In Section 3, the new limiter is introduced. We first
define the MP constraints for both left flux and right flux. Then the proposed
relaxations to the MP constraints are explained in detail and a MP property is
proven. Finally, a short analysis of comparison is given for different limiters. In
Section 4, we give a portion of C code for the limiters. Then numerical results
for linear advection equation and Vlasov-Poisson system are collected. At the
end, we give a conclusion and perspectives.

2. Highly accurate Semi-Lagrangian scheme

In this section, we will introduce the highly accurate Semi-Lagrangian scheme
for the free transport equation

∂tf + v∂xf = 0. (1)

Let us first introduce uniform mesh in space as xi = ih, i ∈ Z, where h is
a fixed mesh size. Similarly, we give discrete time as tn = n∆t, n ∈ Z+, where
∆t is time step. Hence the numerical solution at discrete grid is denoted by fni .

The classical Semi-Lagrangian scheme is divided in two steps. The first
step is devoted to finding foot of characteristic curve. For the free transport
equation (1), the foot is simply xi − v∆t, if we start from xi. The second step
consists to approximate the solution by an interpolation method thanks to the
following relation

f(tn+1, xi) = f(tn, xi − v∆t).

Firstly, we notice that the foot of characteristic curve will locate between
two successive nodes of the mesh. Once the foot is determined, we use Lagrange
interpolation of odd degree 2d+ 1, with d ∈ N to approximate f(tn, xi − v∆t).
The detailed construction steps are explained in Appendix A.

Secondly, the Semi-Lagrangian scheme can be recast into a flux form, as we
have in classical finite volume scheme for transport equation. It is a preparation
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(a) Left flux case (b) Right flux case

Figure 1: Foot of characteristic curve for Semi-Lagrangian method

cL0 (ν) 1

cL−1(ν) 1
6ν

2 − 1
6

cL0 (ν) − 1
3ν

2 + 1
2ν + 5

6

cL1 (ν) 1
6ν

2 − 1
2ν + 1

3

cL−2(ν) 1
120ν

4 − 1
24ν

2 + 1
30

cL−1(ν) − 1
30ν

4 + 1
24ν

3 + 1
4ν

2 − 1
24ν − 13

60

cL0 (ν) 1
20ν

4 − 1
8ν

3 − 1
3ν

2 + 5
8ν + 47

60

cL1 (ν) − 1
30ν

4 + 1
8ν

3 + 1
12ν

2 − 5
8ν + 9

20

cL2 (ν) 1
120ν

4 − 1
24ν

3 + 1
24ν

2 + 1
24ν − 1

20

Table 1: Values of cL` (ν) = cR−`(ν), ` = −d, . . . , d, for d = 0, 1, 2, using (A.3).

phase for monotonicity-preserving limiter. There are two types of flux formulae,
called left flux or right flux formula.

Left flux formula (symbolized by L). Suppose that the foot xi−v∆t locates
between xjL−1 and xjL , as shown in Fig 1(a). Then we define local CFL number
νL := (xjL−(xi−v∆t))/h, it is clear that νL ∈ (0, 1). Now, the Semi-Lagrangian
scheme in left flux formula can be expressed as

fn+1
i = fnjL − νL

(
fLjL+1/2 − fLjL−1/2

)
, (2)

defining linear formula

fLjL+1/2 =

d∑
`=−d

cL` (νL)fnjL+`, (3)

where cL` (ν), ` ∈ {−d, . . . , d}, functions of variable ν, are functional coefficients
given in (A.3). We report on Table 1, the expressions of cL` (ν) for some values
of d.

Right flux formula (symbolized by R). Suppose that the foot xi − v∆t
locates between xjR and xjR+1, as shown in Fig 1(b). Then we define local
CFL number νR := ((xi − v∆t) − xjR)/h, also νR ∈ (0, 1), and νR = 1 − νL.
Now, the Semi-Lagrangian scheme in right flux formula can be expressed as

fn+1
i = fnjR + νR

(
fRjR+1/2 − fRjR−1/2

)
, (4)
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defining linear formula

fRjR−1/2 =

d∑
`=−d

cR` (νR)fnjR+`, (5)

where cR` (ν), ` ∈ {−d, . . . , d}, functions of variable ν, are functional coefficients
given in (A.6). Moreover, we can easily deduce that cR` (ν) = cL−`(ν), for ` =
−d, . . . , d (see Appendix A.2).

Remark 2.1. By following a classical finite volume scheme (not Semi-Lagrangian),
we may think of using the left flux formula for v > 0 and the right flux formula
for v < 0, but it is not necessary. Indeed, the Lagrange interpolation depends
on the location of foot of characteristic curve, not on the sign of v. The two
flux formulae (2) and (4) are equivalent to the Lagrange interpolation approx-
imation. Therefore, we can choose freely from the left flux formula (2) or the
right flux formula (4) according to convenience.

3. MP constraints and relaxation strategies

The proposed scheme in the previous section is simple and very accurate for
regular solutions. However, it may provoke spurious oscillations for irregular
solutions. In this section, we focus on proposing a flux limiter, such that on the
one hand, the scheme has a monotonicity-preserving (MP) property, and on
the other hand, the scheme can preserve high accuracy.

The strategy for deriving flux limiter consists of two steps: the first is to
identify the MP constraints, the second is to relax the MP constraints near
extrema.

3.1. MP constraints

The MP constraints are related to the left flux formula or the right flux
formula.

MP constraints related to the left flux formula (symbolized by L).
The MP constraints consist of two parts, as mentioned in [28]. The first one is
that the flux fnjL+1/2 should be located between fnjL and fnjL+1, i.e.

mjL+1/2 ≤ fLjL+1/2 ≤MjL+1/2, (6)

where mjL+1/2 = min
(
fnjL , f

n
jL+1

)
and MjL+1/2 = max

(
fnjL , f

n
jL+1

)
, for jL ∈

Z. The second one is the total variation diminishing (TVD) condition, i.e.

mjL−1/2 ≤ fn+1
i ≤MjL−1/2.

Using the left flux formula (2), the above TVD condition is equivalent to

fnjL−1/2 +
1

νL

(
fnjL −MjL−1/2

)
≤ fLjL+1/2 ≤ fnjL−1/2 +

1

νL

(
fnjL −mjL−1/2

)
.
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Consider that mjL−1/2 ≤ fLjL−1/2 ≤ MjL−1/2, then a sufficient condition of

TVD scheme is

ΦνL,jL(MjL−1/2) ≤ fLjL+1/2 ≤ ΦνL,jL(mjL−1/2), (7)

where

Φν,j(x) = x+
1

ν
(fj − x).

Thanks to the MP constraints (6) and (7), which can be rewritten as

max
(
mjL+1/2,ΦνL,jL(MjL−1/2)

)
≤ fLjL+1/2 ≤ min

(
MjL+1/2,ΦνL,jL(mjL−1/2)

)
,

(8)
we can easily find that if the data {fni } is monotone, then {fn+1

i } is also
monotone for all i ∈ Z, because fn+1

i lies between fnjL−1 and fnjL .

In the sequel, we will use same notations as in [48]:

minmod(x, y) =
1

2
(sgn(x) + sgn(y)) min(|x|, |y|),

median(x, y, z) = x+ minmod(y − x, z − x),

I[x1, . . . , xk] = [min(x1, . . . , xk),max(x1, . . . , xk)],

where sgn is the sign function.
As mentioned in the literature [56, 58], these MP constraints (6)-(7) will lead

to first order accuracy for smooth solution, the so called clipping near extrema.
For instance, in [48], two cases near extrema are identified:

Case 1: When fnjL = fnjL+1, the constraint (6) leads that the numerical flux is

limited as fLjL+1/2 = fnjL .

However, let us consider a second order Semi-Lagrangian scheme interpo-
lating on xjL−2, xjL−1 and xjL , which is nothing but the Beam-Warming
scheme (see e.g. [25])

fn+1
i = fnjL − νL(fLjL+1/2 − fLjL−1/2),

where the flux is defined by

fLjL+1/2 = fnjL +
1

2
(1− νL)(fnjL − fnjL−1). (9)

Due to the MP constraint (6), the flux will be limited to fLjL+1/2 = fnjL ,

which is quite different to (9) if fnjL 6= fnjL−1, thus the Beam-Warming
scheme degenerates to a first order scheme.

Case 2: When fnjL−1 = fnjL , the constraint (7) leads also that fLjL+1/2 = fnjL .

This time, let us consider a second order Semi-Lagrangian scheme inter-
polating on xjL−1, xjL and xjL+1, which is nothing but the Lax-Wendroff
scheme (see e.g. [25])

fn+1
i = fnjL − νL(fLjL+1/2 − fLjL−1/2),
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where the flux is defined by

fLjL+1/2 = fnjL +
1

2
(1− νL)(fnjL+1 − fnjL).

Again the Lax-Wendroff scheme degenerates to a first order scheme.

We see in both Case 1 and Case 2, we lose accuracy near extrema.
To remedy this drawback of MP constraints, we should relax the constraints (6)

and (7) near extrema. The rule of relaxation is on the one hand to provide re-
laxation space as much as possible near extrema, and on the other hand to
preserve monotonicity for monotone solution.

We notice that the constraints (6) and (7) are defined by the local maximum
Mj+1/2 and local minimum mj+1/2, for j ∈ Z. Thus, one possible way to relax
the MP constraints near extrema is to replace the local extremum by a ”better”
extremum guess. More precisely, we denote the ”better” extremum guess by

M
(1,L)
j+1/2/m

(1,L)
j+1/2 and M

(2,L)
j+1/2/m

(2,L)
j+1/2, for j ∈ Z. Then injecting them into the

MP constraints (6)-(7) yields

m
(1,L)

jL+1/2
≤ fLjL+1/2 ≤M

(1,L)

jL+1/2
, (10)

and
ΦνL,jL(M

(2,L)

jL−1/2
) ≤ fLjL+1/2 ≤ ΦνL,jL(m

(2,L)

jL−1/2
), (11)

which lead to the limiting

fLjL+1/2 = median
(
fmin,jL , f

L
jL+1/2, fmax,jL

)
,

with

fmin,jL = max
(
m

(1,L)

jL+1/2
,ΦνL,jL(M

(2,L)

jL−1/2
)
)
,

fmax,jL = min
(
M

(1,L)

jL+1/2
,ΦνL,jL(m

(2,L)

jL−1/2
)
)
.

Those ”better” extremum guesses are the key point of our proposed limiter,
which will be specified in Section 3.2 and Section 3.3. Moreover, looking at (8)
a definition of new MP constraints is deduced as follows

Definition 3.1. For monotonic data, that is fnjL−2 ≤ fnjL−1 ≤ fnjL ≤ fnjL+1 ≤
fnjL+2 or fnjL−2 ≥ fnjL−1 ≥ fnjL ≥ fnjL+1 ≥ fnjL+2, if the following constraints are
verified

1. max
(
mjL+1/2,ΦνL,jL(MjL−1/2)

)
≤ max

(
m

(1,L)

jL+1/2
,ΦνL,jL(M

(2,L)

jL−1/2
)
)

2. min
(
MjL+1/2,ΦνL,jL(mjL−1/2)

)
≥ min

(
M

(1,L)

jL+1/2
,ΦνL,jL(m

(2,L)

jL−1/2
)
)

then, the constraints defined in (10)-(11) are MP.
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We first consider a case where we take the same value for the extremum
guess, that is m

(1,L)
j+1/2 = m

(2,L)
j+1/2 and M

(1,L)
j+1/2 = M

(2,L)
j+1/2. Then the previous

definition simplifies and we can check the following proposition.

Proposition 3.1. We suppose that mL
j+1/2 := m

(1,L)
j+1/2 = m

(2,L)
j+1/2 and ML

j+1/2 :=

M
(1,L)
j+1/2 = M

(2,L)
j+1/2 for all j. Then, the constraints defined in (10)-(11) are MP

if we have the following strong MP property:

mj+1/2 ≤ mL
j+1/2, Mj+1/2 ≥ML

j+1/2, j ∈ {jL − 1, jL}, (12)

for monotonic data, that is fnjL−2 ≤ fnjL−1 ≤ fnjL ≤ fnjL+1 ≤ fnjL+2 or fnjL−2 ≥
fnjL−1 ≥ fnjL ≥ fnjL+1 ≥ fnjL+2.

MP constraints related to the right flux formula (symbolized by R).
Similarly to the modified constraints (10)-(11), we obtain MP constraints related
to the right flux formula

m
(1,R)

jR−1/2
≤ fRjR−1/2 ≤M

(1,R)

jR−1/2
(13)

together with

ΦνR,jR(M
(2,R)

jR+1/2
) ≤ fRjR−1/2 ≤ ΦνR,jR(m

(2,R)

jR+1/2
), (14)

leading to the limiting

fRjR−1/2 = median
(
fmin,jR , f

R
jR−1/2, fmax,jR

)
with

fmin,jR = max
(
m

(1,R)

jR−1/2
,ΦνR,jR(M

(2,R)

jR+1/2
)
)
,

fmax,jR = min
(
M

(1,R)

jR−1/2
,ΦνR,jR(m

(2,R)

jR+1/2
)
)
.

Here, M
(1,R)
j+1/2/m

(1,R)
j+1/2 or M

(2,R)
j+1/2/m

(2,R)
j+1/2 for j ∈ Z are ”better” extremum

guesses for right flux formula.

Remark 3.1. When we have m
(1,R)

jR+1/2
= m

(2,L)

jL−1/2
, M

(1,R)

jR+1/2
= M

(2,L)

jL−1/2
and

m
(2,R)

jR+1/2
= m

(1,L)

jL−1/2
, M

(2,R)

jR+1/2
= M

(1,L)

jL−1/2
, then the limiter for right flux for-

mula is equivalent to the one for left flux formula. The detailed explanation is
given in Appendix B.1.

3.2. Relaxation of the MP constraints (6)-(7) to satisfy the strong MP prop-
erty (12)

In [48], the authors look for relaxing the constraint (6) and then in a second
step, the constraint (7). In our framework, we directly want to determine
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fFL
jL+1/2(α)

fFR
jL+1/2(α)

fjL−1

fjL

fjL+1

fjL+2

mUm
jL+1/2 = fFR

jL+1/2(0)

fFL
jL+1/2(1)

α
0 1

fFL
jL+1/2(α)

fFR
jL+1/2(α)

fjL−1

mUm
jL+1/2 = fjL

fjL+1 =MUm
jL+1/2

fjL+2

fFR
jL+1/2(0)

fFL
jL+1/2(1)

α
0 1

(a) Near local minimum (b) Monotonic data

Figure 2: Searching extremum guess by linear extrapolation.

”better” extremum guess ML
j+1/2/m

L
j+1/2, for j ∈ Z, which then will relax both

constraints (6) and (7). The idea is on the one hand to search enough relaxation
space near extrema, on the other hand to simply preserve the constraints (6)-
(7) for monotone solution. A first way to find ”better” extremum guess is
inspired from Umeda’s method [51] (Um for short), that is to search extremum
by extrapolating from fnjL−1 and fnjL (or fnjL and fnjL+1) to interval ]xjL , xjL+1[

(see Fig 2).
Let us define linear extrapolation from left (FL) or from right (FR) as a

function of variable α:

fFLjL+1/2(α) = fnjL + α
(
fnjL − fnjL−1

)
,

fFRjL+1/2(α) = fnjL+1 + (1− α)
(
fnjL+1 − fnjL+2

)
.

Thanks to these definitions, we propose the minimum guess , as shown in

Fig 2(a), is max
(
fFLjL+1/2(1), fFRjL+1/2(0)

)
. Clearly, this minimum guess provides

enough relaxation space.
On the other hand, for monotonic data (see Fig 2(b)), we shall restrict flux

in I[fnjL , f
n
jL+1]

= I
[
fFLjL+1/2(0), fFRjL+1/2(1)

]
. So the minimum guess is min

(
fFLjL+1/2(0), fFRjL+1/2(1)

)
.

Combining the above two cases, the proposed minimum guess is

mUm
jL+1/2 = min(min(fFLjL+1/2(0), fFRjL+1/2(1)),max(fFLjL+1/2(1), fFRjL+1/2(0))).

(15a)

Similarly, the maximum guess is

MUm
jL+1/2 = max(max(fFLjL+1/2(0), fFRjL+1/2(1)),min(fFLjL+1/2(1), fFRjL+1/2(0))).

(15b)
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fTV DjL−1/2(α)

fLCjL−1/2(α)

fjL−2

fjL−1

fjL

fjL+1

fLCj−
α

0
1
νL1

fTV DjL−1/2(α)fLCjL−1/2(α)

fjL−2 fjL−1

fLCj−

fjL

fjL+1

α
0

1
νL1

(a) Near local minimum (b) Monotonic data

Figure 3: Searching extremum guess by using large curvature.

Let us now show property of MP constraints with the above extremum guess.
Proposition 3.2. For monotonic data, the constraints defined in (10)-(11) is

MP when substituting m
(1,L)

jL+1/2
/M

(1,L)

jL+1/2
by mUm

jL+1/2/M
Um
jL+1/2 and m

(2,L)

jL−1/2
/M

(2,L)

jL−1/2

by mUm
jL−1/2/M

Um
jL−1/2.

Proof. For increasing data, we have

mUm
jL+1/2 = min

(
min(fnjL , f

n
jL+1),max(2fnjL − fnjL−1, 2f

n
jL+1 − fnjL+2)

)
= min

(
fnjL ,max(fnjL + (fnjL − fnjL−1), 2fnjL+1 − fnjL+2)

)
.

It is clear that fnjL+(fnjL−fnjL−1) ≥ fnjL , so that max(fnjL+(fnjL−fnjL−1), 2fnjL+1−
fnjL+2) ≥ fnjL . Thus mUm

jL+1/2 = fnjL .

On the other hand, we have

MUm
jL+1/2 = max

(
max(fnjL , f

n
jL+1),min(2fnjL − fnjL−1, 2f

n
jL+1 − fnjL+2)

)
= max

(
fnjL+1,min(2fnjL − fnjL−1, f

n
jL+1 + (fnjL+1 − fnjL+2))

)
It is clear that fnjL+1+(fnjL+1−fnjL+2) ≤ fnjL+1, so that min(2fnjL−fnjL−1, f

n
jL+1+

(fnjL+1 − fnjL+2))≤fnjL+1. Thus MUm
jL+1/2 = fnjL+1.

Similarly, we have mUm
jL−1/2 = fnjL−1 and MUm

jL−1/2 = fnjL . Therefore, we have

the result.
For decreasing data, the proof follows the same way.

3.3. Further relaxation of the MP constraints (6)-(7)

We now allow for the scheme to take different values for m
(1,L)
j+1/2/M

(1,L)
j+1/2 and

m
(2,L)
j+1/2/M

(2,L)
j+1/2, in order to have even more relaxation space. For this, we follow

10



[48], where a technique using Large Curvature (as it will be explained later) was
used for constraint (7). By a symmetry argument, we will get also a way to
relax constraint (6). Let us consider the Case 2 of Section 3.1. When near local
minimum, for example as shown in Fig 3(a), the constraint (7) becomes

fnjL ≤ fnjL+1/2 ≤ fnjL−1 +
1

νL
(fnjL − fnjL−1) = ΦνL,jL(fnjL−1). (16)

Since fnjL = fnjL−1, we deduce that fnjL+1/2 = fnjL . One way to relax the

constraint (16) is to replace fnjL−1 by a better minimum guess. Notice from

Fig 3(a) that the curvature is positive. We thus propose the following minimum
guess

fLCj− = fnjL − djL−1/2, (17)

where LC stands for large curvature, and dj−1/2 = minmod(dj−1, dj), dj =
fj−1 − 2fj + fj+1 for j ∈ Z. Let us denote

fTV DjL−1/2(α) = fnjL−1 + α(fnjL − fnjL−1) = Φ1/α,jL(fnjL−1),

fLCjL−1/2(α) = fLCj− + α(fnjL − fLCj− ) = Φ1/α,jL(fLCj− ).

It is clear that fTV DjL−1/2

(
1
νL

)
= ΦνL,jL(fnjL−1) ≤ ΦνL,jL(fLCj− ) = fLCjL−1/2

(
1
νL

)
since 1

νL
≥ 1 and fLCj− ≤ fnjL as djL−1/2 ≥ 0, thus we gain more relaxation space.

On the other hand, for increasing data (see Fig 3(b)), we have djL−1/2 ≤
fnjL − fnjL−1 since djL−1/2 = 0, thus fLCj− = fnjL ≥ fnjL−1, so that ΦνL,jL(fLCj− ) =

fnjL ∈ [fnjL , f
n
jL+1].

Combining with the limiter introduced in Section 3.2, we propose extremum

guess M
(2,L)

jL−1/2
/m

(2,L)

jL−1/2
as max(MUm

jL−1/2, f
LC
j− ) / min(mUm

jL−1/2, f
LC
j− ). There-

fore, we have

max
(
mUm
jL+1/2,ΦνL,jL(max(MUm

jL−1/2, f
LC
j− ))

)
≤ fLjL+1/2 ≤ min

(
MUm
jL+1/2,ΦνL,jL(min(mUm

jL−1/2, f
LC
j− ))

)
.

(18)

Notice that near local minimum, for instance the case in Fig 3(a), mUm
jL−1/2

and fLCj− can be simplified as

mUm
jL−1/2 = max(fnjL − djL−1, f

n
jL−1 − djL),

fLCj− = max(fnjL − djL−1, f
n
jL − djL),

since mUm
jL−1/2 = max(2fnjL−1 − fnjL−2, 2f

n
jL − fnjL+1) ≤ min(fnjL , f

n
jL−1), using

that djL ≥ 0, djL−1 ≥ 0 and fjL ≤ fjL+1 and fjL−1 ≤ fjL−2. It is clear
that fLCj− ≤ mUm

jL−1/2 if fnjL ≤ fnjL−1. Moreover, for constant curvature case, we

always have fLCj− ≤ mUm
jL−1/2. This indicates that, compared with mUm

jL−1/2, fLCj−
may lead more relaxation space.

11



Then, we consider the limiter for right flux formula, by symmetric argument,
we have the constraint

max
(
mUm
jR+1/2,ΦνR,jR+1(max(MUm

jR+3/2, f
LC
j+ ))

)
≤ fRjR+1/2 ≤ min

(
MUm
jR+1/2,ΦνR,jR+1(min(mUm

jR+3/2, f
LC
j+ ))

)
,

with

fLCj+ := fjR+1 − djR+3/2 = fjL − djL+1/2. (19)

Thanks to the equivalent relation between the left flux formula and the right
flux formula shown in Remark 3.1, we have

max
(

min(mUm
jL+1/2, f

LC
j+ ),ΦνL,jL(MUm

jL−1/2)
)
≤ fLjL+1/2 ≤ min

(
max(MUm

jL+1/2, f
LC
j+ ),ΦνL,jL(mUm

jL−1/2)
)
.

(20)

Now, taking union of intervals defined in (18) and (20), we can propose the
final limiting:

fLjL+1/2 = median
(
fmin,jL , f

L
jL+1/2, fmax,jL

)
, jL ∈ Z, (21a)

with

fmin,jL = min
(

max
(
mUm
jL+1/2,ΦνL,jL(max(MUm

jL−1/2, f
LC
j− ))

)
,max

(
min(mUm

jL+1/2, f
LC
j+ ),ΦνL,jL(MUm

jL−1/2)
))

(21b)
and

fmax,jL = max
(

min
(
MUm
jL+1/2,ΦνL,jL(min(mUm

jL−1/2, f
LC
j− ))

)
,min

(
max(MUm

jL+1/2, f
LC
j+ ),ΦνL,jL(mUm

jL−1/2)
))

.

(21c)
Proposition 3.3. For monotonic data, the constraint defined in (21) is MP.

Note that MP is defined for constraints (10)-(11), so, saying that ”the con-
straint defined in (21) is MP” might not be clear. However, the constraint
defined in (21) can be seen as constraints (10)-(11). In fact, by defining

• (m
(1,L)

jL+1/2
,M

(2,L)

jL−1/2
) = (mUm

jL+1/2,max(MUm
jL−1/2, f

LC
j− )), if

max
(
mUm
jL+1/2,ΦνL,jL(max(MUm

jL−1/2, f
LC
j− ))

)
≤ max

(
min(mUm

jL+1/2, f
LC
j+ ),ΦνL,jL(MUm

jL−1/2)
)

• (m
(1,L)

jL+1/2
,M

(2,L)

jL−1/2
) = (min(mUm

jL+1/2, f
LC
j+ ),MUm

jL−1/2), otherwise,

and by defining similarly for (M
(1,L)

jL+1/2
,m

(2,L)

jL−1/2
).

The proof of the proposition is given in Appendix B.2. Moreover, the MP con-
straint related to the right flux formula can be obtained by symmetric argument
from (21).

12



3.4. Other possible choices

In this part, we explore other possible choices for extremum guess and make
more precise links with the literature.

A first natural choice is the TVD limiting, that is to substitutem
(1,L)

jL+1/2
/M

(1,L)

jL+1/2

or m
(2,L)

jL−1/2
/M

(2,L)

jL−1/2
by

mTV D
jL+1/2 = min

α∈{0,1}
fMD
jL+1/2(α), MTV D

jL+1/2 = max
α∈{0,1}

fMD
jL+1/2(α), (22)

where fMD
jL+1/2(α) (MD stands for median), coming from [48], reads

fMD
jL+1/2(α) = (1− α)fnjL + αfnjL+1 −minmod(αdjL , (1− α)djL+1).

It is easy to find that TVD limiting is nothing but MP constraints (6)-(7) itself.
Second choice is inspired from the Suresh’s limiting [48] or the Daru-Tenaud’s

limiting [21] (DaTe for short). Actually, the MP constraints (6)-(7) define two
limiting intervals, i.e.

I[fnjL , f
n
jL+1], I[fnjL , f

UL
jL ], (23)

where fULjL = fnjL + 1−νL
νL

(fnjL − fnjL−1) (UL stands for upper limit). These two
limiting intervals are enlarged by

I[fnjL , f
n
jL+1, f

MD
jL ], I[fnjL , f

UL
jL , fLCjL ]. (24)

For fMD
jL , in both the Suresh’s limiting and the Daru-Tenaud’s limiting, we have

fMD
jL = fMD

jL+1/2(1/2). (25)

However, for fLCjL , in the Suresh’s limiting, we have

fLCjL = fnjL +
1

2
(fnjL − fnjL−1) +

4

3
djL−1/2, (26)

whereas in the Daru-Tenaud’s limiting, we have

fLCjL = fnjL +
1

2

1− νL
νL

(fnjL − fnjL−1 + djL−1/2). (27)

In [48], the authors point out that (26) works for νL ≤ 0.2, while (27) is free
from this CFL constraint.

We remark that our limiting (21), without taking LC strategy, can be re-
garded as the enlarged intervals of (23), i.e.

I[mUm
jL+1/2,M

Um
jL+1/2], I[ΦνL,jL(mUm

jL−1/2),ΦνL,jL(MUm
jL−1/2)].

This means that our limiting (21) can relax (23) without using LC strategy,
whereas the Suresh’s limiting or the Daru-Tenaud’s limiting cannot : there, a

13



different strategy is adopted for (6) and (7), which is maybe linked to the finite
volume formulation which could favor the case of small CFL. Furthermore, the
LC strategy in (21) can be recast as

ΦνL,jL(fLCj− ) = fnj +
1− νL
νL

djL−1/2. (28)

Thus near local extremum, for instance as shown in Fig 2(a), compared with (27),
our LC strategy provides more relaxation space, i.e.

fLCjL ≤ ΦνL,jL(fLCj− ).

Now thanks to the enlarged interval I[fnjL , f
n
jL+1, f

MD
jL ], we define extremum

guess as

mDaTe
jL+1/2 = min

α∈{0,1/2,1}
fMD
jL+1/2(α), MDaTe

jL+1/2 = max
α∈{0,1/2,1}

fMD
jL+1/2(α). (29)

Let us consider again the near local minimum, as shown in Fig 2(a), the choice
DaTe implies

mDaTe
jL+1/2 = max

(
fFLjL+1/2(1/2), fFRjL+1/2(1/2)

)
.

Evidently, we have

mUm
jL+1/2 ≤ mDaTe

jL+1/2 ≤ mTV D
jL+1/2.

This conclude that, compared with the choices TVD and DaTe, Um in Sec-
tion 3.2 provides largest relaxation space. On the other hand, the limiting with
the choices TVD and DaTe is also MP for monotonic data. The proof following
the same arguments presented in Section 3.2.

At last, we remark that Tanaka [49] has adopted the original Suresh’s MP
limiting to the Semi-Lagrangian scheme.

We finish this subsection, by giving a remark about the Daru-Tenaud lim-
iting. Indeed, we have two formulations: the historical one, which consists in
using (24) with (27) and (25), and the formulation from subsection 3.2 using
(29) (that is, without using the LC strategy). It turns out that both formula-
tions are equivalent as shown in the following proposition. This gives also a new
explanation why formula (27) is more natural than (26), as told in [21].

Proposition 3.4. We have

I[mDaTe
jL+1/2,M

DaTe
jL+1/2]∩I[ΦνL,jL(mDaTe

jL−1/2),ΦνL,jL(MDaTe
jL−1/2)] = I[fnjL , f

n
jL+1, f

MD
jL ]∩I[fnjL , f

UL
jL , fLCjL ],

with fMD
jL defined by (25) and fLCjL defined by (27).

Proof. We have fMD
jL−1 = fMD

jL−1/2(1/2) =
fn
jL

+fn
jL−1

2 − djL−1/2

2 , so that

ΦνL,jL(fMD
jL−1) =

fnjL + fnjL−1

2
− djL−1/2

2
+

1

νL

(
fnjL − fnjL−1

2
+
djL−1/2

2

)
= fnjL −

fnjL − fnjL−1

2
− djL−1/2

2
+

1

2

1

νL

(
fnjL − fnjL−1 + djL−1/2

)
= fLCjL ,

which leads to the result.
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So, concerning the Daru-Tenaud limiting, the LC initial strategy (27) can
be interpreted with an extremum that satisfies the strong MP property. We can
then wonder if it could be the same with the new LC strategy (28). In fact,
it is not the case. We can not use fLCj− to define a extremum in replacement

of mUm
jL−1/2/M

Um
jL−1/2. As counterexample, we can take fnjL−2 = 0, fnjL−1 = 0,

fnjL = 1 and fnjL+1 ≥ 3; we get min(fnjL , f
n
jL+1, f

n
jL − djL−1/2) = −1, which

violates the monotonicity property.

3.5. Summary of MP limiter

In this part, we give a summary of MP limiter for left flux formula, the one
corresponding to right flux formula can be obtained similarly. First, compute
flux fLjL+1/2 j

L ∈ Z by linear formula (3). Then compute local extremum guess

mUm
jL+1/2/M

Um
jL+1/2, mTV D

jL+1/2/M
TV D
jL+1/2, mDaTe

jL+1/2/M
DaTe
jL+1/2 by (15), (22), (29) re-

spectively, and compute fLCj− and fLCj+ by (17) and (19) respectively. At last,
the flux is limited by MP constraint as

fLjL+1/2 = median
(
fmin,jL , f

L
jL+1/2, fmax,jL

)
, jL ∈ Z, (30a)

with

fmin,jL = min
(

max
(
mX
jL+1/2,ΦνL,jL(max(MY

jL−1/2, f
LC
j− ))

)
,max

(
min(mX

jL+1/2, f
LC
j+ ),ΦνL,jL(MY

jL−1/2)
))

(30b)
and

fmax,jL = max
(

min
(
MX
jL+1/2,ΦνL,jL(min(mY

jL−1/2, f
LC
j− ))

)
,min

(
max(MX

jL+1/2, f
LC
j+ ),ΦνL,jL(mY

jL−1/2)
))

,

(30c)
for X,Y ∈ {Um,TV D,DaTe}. When, we do not use the LC relaxation, the
formula simplifies into

fmin,jL = max
(
mX
jL+1/2,ΦνL,jL(MY

jL−1/2)
)
, fmax,jL = min

(
MX
jL+1/2,ΦνL,jL(mY

jL−1/2)
)
.

(31)

4. Numerical results

In order to have an idea of the performance of the new developed schemes for
1d constant advection and Vlasov-Poisson simulations, we will focus mainly on
two limiters. The first one is the default limiter, which will be called lim or ”with
limiter”, corresponding to the Umeda strategy, together with Large Curvature
(LC) relaxation (that is, lim=Um+LC: (30b),(30c), with X=Y=Um). The
second one is the Daru-Tenaud limiter without LC relaxation, which is called
DaTe, that is (31), with X=Y=DaTe. The 2 other combinations: Um (Umeda
strategy without LC relaxation: (31), with X=Y=Um) and DaTe+LC (Daru-
Tenaud limiter with LC relaxation: (30b),(30c), with X=Y=DaTe) will be just
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showed on one example, in order to see that they can lead to different numerical
results. In general, the schemes that give the most different behavior are lim
and DaTe. So we prefer to focus on these 2 schemes, in order not to make the
presentation too heavy, and the two other combinations generally lead to results
between these two schemes. Note also that lim is the scheme that leads to the
most relaxation near extrema, while DaTe the least. In order to see the influence
of the limiter, we will compare with the method without limiter, which will be
called no lim or ”without limiter”. There is then the choice of d; we will mainly
focus on d = 2 (the degree of precision is 5) and d = 4 (degree of precision is
9), in order to see the influence of the degree in the numerical results. For 1d
constant advection, we will consider also higher degrees (typically d = 8), but
we experimented drop of efficiency for the limited schemes when going to higher
degrees, in particular on Vlasov-Poisson simulations. So, we prefer to stick to
d = 2 and d = 4, where we already can see the drop of efficiency. In order to
see how the scheme behaves on the different test cases in comparison to other
schemes, we have selected the cubic splines method (as standard unlimited
scheme, already used in [10]) and the fifth-order conservative semi-Lagrangian
WENO (which will be called SLWENO5) scheme (as example of limited scheme
developed in [44]; see [41] for a recent application of such scheme; we use here
the implementation given in [40], with ε = 10−6 instead of ε = 10−10).

4.1. Implementation issues

We give part of an implementation in the language C of the limiter in Figure
4; we have chosen here the right flux and take the example of the limiter with
lim=Um+LC. We have not tried to fully optimize the code, but we remark that
the limiter has a moderate overhead of computation, thanks to some reuse of
computation, in this flux form. Note that some implementations can lead to
large floating point errors and unsymmetric results; we have tried to limit this,
in particular, by avoiding to have 1/ν factors; we also choose to switch to first
order limiter if the difference with it is very small.

4.2. Free transport equation

We first consider the classical constant advection equation ∂tf + ∂xf = 0
with initial condition f(t = 0, x) = f0(x) on the periodic domain [−1, 1] and
for t ∈ [0, T ], with T ∈ R+, the final time. Spatial mesh is xi = −1 + ih, i =
0, . . . , N , with spatial step h = 2

N , and N ∈ N∗ is the number of cells. The
time step is ∆t = T/M ≥ 0, with M ∈ N∗, the number of time steps. We first
focus on a square wave test, in order to see the effect of the limiter. Then we
look at smooth tests: first a sinusoidal wave, which is the canonical smooth
function and a quartic sine function, whose solution should remain positive.
Finally, we consider a test introduced in [38], called here Shu test case, to
test how WENO type schemes are able to handle different types of oscillations.
Note that the such tests were chosen in [49] and [57] for example.
For the constant advection, no error is introduced in time, as the characteristics
are exactly solved in time. It is in fact better in this context to use semi-
Lagrangian schemes than Eulerian schemes, the latter introducing an error in
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flux2 = 0.;

for (ii=-d;ii<=d;ii++) flux2+=w[ii]*q[ii];

flux2 = nu*flux2;

//TVD

fmin[1] = DMIN(q[0],q[1]);

fmax[1] = DMAX(q[0],q[1]);

fmin[0] = DMIN(q[-1],q[0]);

fmax[0] = DMAX(q[-1],q[0]);

//Um

fmin[1] = DMIN(fmin[1],DMAX(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmax[1] = DMAX(fmax[1],DMIN(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmin[0] = DMIN(fmin[0],DMAX(2.*q[-1]-q[-2],2.*q[0]-q[1]));

fmax[0] = DMAX(fmax[0],DMIN(2.*q[-1]-q[-2],2.*q[0]-q[1]));

//fLC

dj = minmod(q[-1]-2.*q[0]+q[1],q[0]-2.*q[1]+q[2]);

fmin2[1] = DMIN(fmin[1],q[0]-dj);

fmax2[1] = DMAX(fmax[1],q[0]-dj);

fmin3[0] = DMIN(fmin[0],q[0]-minmod(q[-1]-2*q[0]+q[1],q[-2]-2*q[-1]+q[0]));

fmax3[0] = DMAX(fmax[0],q[0]-minmod(q[-1]-2*q[0]+q[1],q[-2]-2*q[-1]+q[0]));

bound0 = DMAX(nu*fmin3[0],q[0]-(1.-nu)*fmax[1]);

bound0 = DMIN(bound0,DMAX(nu*fmin[0],q[0]-(1.-nu)*fmax2[1]));

bound1 = DMIN(nu*fmax3[0],q[0]-(1.-nu)*fmin[1]);

bound1 = DMAX(bound1,DMIN(nu*fmax[0],q[0]-(1.-nu)*fmin2[1]));

flux2 = DMIN(flux2,bound1);

flux2 = DMAX(bound0,flux2);

for(i=0;i<N;i++){

flux1 = flux2;

q++;

flux2 = 0.;

for (ii=-d;ii<=d;ii++)flux2+=w[ii]*q[ii];

flux2 = nu*flux2;

//TVD

fmin[0] = fmin[1];

fmax[0] = fmax[1];

fmin[1] = DMIN(q[0],q[1]);

fmax[1] = DMAX(q[0],q[1]);

//Um

fmin[1] = DMIN(fmin[1],DMAX(2.*q[0]-q[-1],2.*q[1]-q[2]));

fmax[1] = DMAX(fmax[1],DMIN(2.*q[0]-q[-1],2.*q[1]-q[2]));

//fLC

fmin3[0] = DMIN(fmin[0],q[0]-dj);

fmax3[0] = DMAX(fmax[0],q[0]-dj);

dj = minmod(q[-1]-2.*q[0]+q[1],q[0]-2.*q[1]+q[2]);

fmin2[1] = DMIN(fmin[1],q[0]-dj);

fmax2[1] = DMAX(fmax[1],q[0]-dj);

bound0 = DMAX(nu*fmin3[0],q[0]-(1.-nu)*fmax[1]);

bound0 = DMIN(bound0,DMAX(nu*fmin[0],q[0]-(1.-nu)*fmax2[1]));

bound1 = DMIN(nu*fmax3[0],q[0]-(1.-nu)*fmin[1]);

bound1 = DMAX(bound1,DMIN(nu*fmax[0],q[0]-(1.-nu)*fmin2[1]));

flux2 = DMIN(flux2,bound1);

flux2 = DMAX(bound0,flux2);

if(fabs(flux2-nu*q[0])<1.e-16) flux2 = nu*q[0];

p[i] = q[-1]-(flux1-flux2);

}

Figure 4: Implementation of the limiter
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time (see [49] for such a study).
The error is governed by the CFL number (defined here by CFL = ∆t/h),
the final time T and the number of cells N . We take as default parameters
CFL = 2.5, a quite big final time T = 800, in order to better see the difference
between the schemes. We make then a convergence study with respect to N
(as in [57]) for the three first tests (for the last one, the convergence study is
more difficult to interpret, as different numerical errors coming from different
smoothness are mixed). As quantities of interest, we look at the error in L1

and L2 norm and also at the total variation (TV) error for the square wave
(which is defined as the total variation minus 2). In order to see the influence of
the CFL number, we change also this number for the square wave test (taking
CFL = 0.25 and CFL = 0.025). Note that taking smaller CFL number leads
generally to bigger error, as more interpolations are used, but only to a certain
limit (as the interpolation gets more accurate when the foot of the characteristic
approaches a grid point), which in fact corresponds to the Eulerian scheme (see
e.g. [18]) where the time error becomes negligible (see [45] for a study where
the number of interpolation is fixed and only the CFL number is changed). For
the convergence study, we only consider the lim=Um+LC scheme and take dif-
ferent values of d, in order to see the influence of the degree. For completing
the numerical results, we consider also plots of the numerical solution together
with the exact solution for the square wave and for the Shu test case (where the
errors are the biggest and thus the plots lead to visible difference between the
schemes).
For the square wave, we can distinguish the behavior between the limiters at low
resolution N = 25 and CFL = 0.25, for different values of d (d = 3, 6, 8). The
Shu test case permits also to appreciate the qualitative behavior of the different
schemes, taking the standard value N = 200.

The different numerical results are summarized here.

• Square wave:

– Initial condition: f0(x) = 1, if x ∈ [−0.75, 0.25] and f0(x) = 0, if
x ∈ [−1,−0.75[∪]0.25, 1].

– On Table 2, representation of the error in L1, L2 norm, its order (in
L1 and L2 norm), and the error in total variation (TV) (defined here
as the total variation minus 2), for CFL = 2.5, 0.25 and 0.025, for
SLWENO5, cubic splines, d = 2 and d = 8 with and without limiter.

– On Table 3 (top), comparison of the limiter lim=Um+LC, with other
combinations: DaTe,Um and Date+LC d = 3, 6 and 8.

• Sinusoidal wave:

– initial condition: f0(x) = sin(πx)

– On Table 3 (middle), representation of the error in L1, L2 norm, its
order r (in L1 and L2 norm) for CFL = 2.5, for SLWENO5, cubic
splines, d = 1, . . . , 4 with limiter.
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• Quartic sine function

– initial condition: f0(x) = sin4(4πx)

– Numerical results on Table 3 (bottom).

• Shu test

– Initial condition is given by

f0(x) =


1
6
(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) , x ∈ [−0.8,−0.6]

1, x ∈ [−0.4,−0.2]
1− |10(x− 0.1)|, x ∈ [0, 0.2]
1
6
(F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)) , x ∈ [0.4, 0.6]

0, x ∈ [−1,−0.8] ∪ [−0.2, 0] ∪ [0.2, 0.4] ∪ [0.6, 1],

withG(x, β, z) = e−β(x−z)2 and F (x, α, a) =
√

max(1− α2(x− a)2, 0),

and a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = ln(2)
36δ2 .

– Numerical results on Figure 5

One first observation is that the new limiting scheme is converging with (al-
most) the expected order of the unlimited scheme (see [26, 57]) which is 2d+1

2d+2

in L1 and the half value in L2 for the square wave and 2d + 1 for the smooth
functions. For the square wave, for d = 1, 3, . . . , 7, we have also found that the
order in L1 is around 0.75, 0.86, 0.89, 0.90, 0.91, 0.92 and half for the L2 norm.
We also observe that the limited and unlimited scheme give generally the same
results on the smooth functions (we can however notice some differences, taking
N ≤ 10 for the sinusoidal wave). For the quartic sine function, we note that the
maximum principle is not satisfied (as the scheme follows the unlimited one and
is not able to preserve the positivity, as it was already the case in [49]) and a
further study enforcing global maximum principle would be worth to be added,
but is not tackled here, in order to already see the sole influence of the mono-
tonicity preserving property. On the contrary, the SLWENO5 scheme (which
is known to be more diffusive) does not converge with the expected order for
the square wave. Taking however a smaller final time T = 8 and CFL = 0.25,
we observe an order of convergence in L1 of 0.83 (in accordance to [57]), which
is the one expected. For the sinusoidal wave, the 5th order of convergence is
reached with however a bigger error than the corresponding unlimited scheme
(that is d = 2, in other words, the WENO scheme with linear weights), but
not for the quartic sine function, as the mesh is certainly not fine enough. So,
with respect to the SLWENO5 scheme, the new scheme behaves favorably and
is less diffusive as already mentioned in [49] and even [48]. We also remark that
the schemes, being higher order, behave favorably with respect to cubic splines,
except of course for d = 1. In that case (d = 1), cubic splines have the same
order of accuracy, but with a better constant: the accuracy is similar between
cubic splines and d = 1 with twice more points (as example, we can look at
the error in L2 norm for the sinusoidal wave: 0.0413 for N = 25 with cubic
splines, which is comparable to 0.0456 for N = 50 with the Lagrange method
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using d = 1).
As seen on the square wave, the total variation error (TV) is increasing (in ab-
solute value) with the degree for the unlimited scheme. On the contrary, for the
limited scheme, the total variation is very well preserved, but we can observe
some little degradation for the small value of CFL = 0.025 and when N is
small. This can be due to the fact that the numerical scheme can diffuse the
solution and then the solution becomes smooth and so the limiter do no more
act. This can sometimes lead to negative values of TV, as already observed in
[49]. Furthermore, we did in fact sometimes encounter situations where new
extrema were found, but this was due to the propagation of round off errors,
which has lead us to do a dedicated modification previously explained. For the
SLWENO5 scheme, we observe that the total variation error is also small, but
it is not as well preserved as for the limited scheme.
So, the limiter permits clearly to improve the total variation error. The intro-
duction of numerical oscillations inherent to the high order unlimited scheme are
removed. On the other hand, for smooth initial data and fine enough mesh, the
limiter does not act and we recover the performance of the high order unlimited
scheme. We can see some improvements for the limiter lim=Um+LC, and see
the advantage of Um w.r.t DaTe and also the use of LC limitation for not too
large degree. Furthermore, there are some other conclusions from observations.
On the one hand, for the higher degree, the error does not always improve, which
is not the case for the unlimited scheme which has proven Lp, p ≥ 1 convergence
even for non smooth data [26], with improvements when the degree get higher
and higher, even if the total variation is of course not improved. On the other
hand, the test for detecting smooth extrema might be improved when a large
stencil is considered. In principle, we could use also the scheme for even degree
interpolation or for cubic or higher order splines. But it seems that both the
larger stencil and dispersion effects seem to lead to bad behavior of the scheme.
Particularly, note that in [48, 21, 49], d = 2 or d = 3 are used and odd degree
is recommended, because it favors diffusion over dispersion.
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CFL=2.5
SLWENO5 cubic splines

N L1 r L2 r TV
25 0.339 0.321 0.129
50 0.216 0.65 0.245 0.39 0.000164
100 0.123 0.81 0.183 0.42 0.00065
200 0.0744 0.73 0.138 0.4 0.000256
400 0.065 0.19 0.138 0.0063 0.00499
800 0.0575 0.18 0.132 0.061 0.00117

N L1 r L2 r TV
25 0.329 0.302 0.415
50 0.201 0.71 0.231 0.38 0.417
100 0.124 0.69 0.179 0.37 0.486
200 0.0738 0.75 0.138 0.37 0.486
400 0.0437 0.75 0.107 0.37 0.483
800 0.026 0.75 0.0821 0.37 0.479

d = 2 with limiter d = 2 without limiter

N L1 r L2 r TV
25 0.26 0.279 0
50 0.146 0.83 0.21 0.41 0
100 0.0825 0.83 0.158 0.41 0
200 0.0464 0.83 0.119 0.41 0
400 0.0261 0.83 0.0891 0.41 0
800 0.0147 0.83 0.0669 0.41 4.44e-16

N L1 r L2 r TV
25 0.326 0.298 0.493
50 0.194 0.75 0.214 0.48 0.766
100 0.108 0.84 0.159 0.43 0.784
200 0.0614 0.82 0.12 0.41 0.799
400 0.0344 0.84 0.0899 0.41 0.801
800 0.0194 0.83 0.0674 0.41 0.8

d = 8 with limiter d = 8 without limiter

N L1 r L2 r TV
25 0.133 0.191 0
50 0.07 0.92 0.14 0.45 0
100 0.0371 0.92 0.102 0.45 0
200 0.0196 0.92 0.0743 0.46 0
400 0.0103 0.92 0.0541 0.46 4.44e-16
800 0.00543 0.93 0.0393 0.46 0

N L1 r L2 r TV
25 0.159 0.163 1.19
50 0.083 0.94 0.119 0.45 1.41
100 0.0476 0.8 0.0878 0.44 1.63
200 0.0246 0.95 0.064 0.46 1.64
400 0.0129 0.93 0.0466 0.46 1.66
800 0.0069 0.91 0.0339 0.46 1.66

CFL=0.25
SLWENO5 cubic splines

N L1 r L2 r TV
25 0.436 0.364 -0.233
50 0.331 0.4 0.296 0.3 -0.201
100 0.437 -0.4 0.375 -0.34 -0.0354
200 0.323 0.43 0.315 0.25 0.00369
400 0.234 0.46 0.265 0.25 0.00564
800 0.161 0.55 0.22 0.27 0.00806

N L1 r L2 r TV
25 0.364 0.334 0.00555
50 0.318 0.19 0.297 0.17 0.41
100 0.189 0.75 0.223 0.41 0.482
200 0.114 0.73 0.172 0.38 0.483
400 0.0674 0.75 0.132 0.38 0.484
800 0.04 0.75 0.102 0.38 0.481

d = 2 with limiter d = 2 without limiter

N L1 r L2 r TV
25 0.338 0.32 0.146
50 0.205 0.72 0.25 0.36 4.44e-16
100 0.116 0.83 0.188 0.41 4.44e-16
200 0.0649 0.83 0.141 0.41 0
400 0.0365 0.83 0.106 0.42 4.44e-16
800 0.0205 0.83 0.0791 0.42 -2.22e-16

N L1 r L2 r TV
25 0.337 0.306 0.451
50 0.237 0.51 0.25 0.29 0.256
100 0.146 0.7 0.189 0.4 0.721
200 0.0858 0.77 0.142 0.41 0.802
400 0.0482 0.83 0.106 0.42 0.803
800 0.0271 0.83 0.0798 0.42 0.805

d = 8 with limiter d = 8 without limiter

N L1 r L2 r TV
25 0.165 0.213 0.0389
50 0.0824 1 0.152 0.48 0
100 0.0433 0.93 0.111 0.46 4.44e-16
200 0.0227 0.93 0.0805 0.46 4.44e-16
400 0.0119 0.93 0.0584 0.46 0
800 0.00624 0.93 0.0424 0.46 -2.22e-16

N L1 r L2 r TV
25 0.145 0.173 0.95
50 0.101 0.52 0.132 0.39 1.62
100 0.0544 0.89 0.0956 0.47 1.64
200 0.0292 0.9 0.0695 0.46 1.69
400 0.0152 0.94 0.0505 0.46 1.65
800 0.00807 0.91 0.0366 0.46 1.56

CFL=0.025
SLWENO5 cubic splines

N L1 r L2 r TV
25 0.457 0.373 -0.296
50 0.351 0.38 0.307 0.28 -0.193
100 0.326 0.11 0.306 0.0029 -0.0316
200 0.279 0.23 0.303 0.016 0.00122
400 0.204 0.45 0.253 0.26 0.00482
800 0.145 0.49 0.212 0.26 0.00805

N L1 r L2 r TV
25 0.341 0.311 0.456
50 0.285 0.26 0.272 0.19 0.635
100 0.183 0.64 0.208 0.39 1.23
200 0.111 0.72 0.158 0.4 1.31
400 0.0625 0.83 0.119 0.4 1.22
800 0.035 0.84 0.0903 0.4 1.09

d = 2 with limiter d = 2 without limiter

N L1 r L2 r TV
25 0.342 0.323 0.12
50 0.211 0.69 0.253 0.35 -1.73e-06
100 0.119 0.83 0.19 0.41 -9.9e-13
200 0.0667 0.83 0.143 0.41 -4e-14
400 0.0375 0.83 0.107 0.42 -4.06e-14
800 0.021 0.83 0.0802 0.42 -4.15e-14

N L1 r L2 r TV
25 0.337 0.306 0.437
50 0.249 0.44 0.256 0.26 0.266
100 0.149 0.74 0.191 0.42 0.681
200 0.0883 0.76 0.144 0.41 0.806
400 0.0496 0.83 0.108 0.42 0.81
800 0.0278 0.83 0.0809 0.42 0.805

d = 8 with limiter d = 8 without limiter

N L1 r L2 r TV
25 0.216 0.22 -0.165
50 0.107 1 0.165 0.42 -0.000688
100 0.0565 0.92 0.121 0.45 6.8e-10
200 0.0294 0.94 0.0872 0.47 1.27e-06
400 0.0154 0.94 0.0628 0.47 5.68e-09
800 0.00809 0.92 0.0458 0.46 3.41e-09

N L1 r L2 r TV
25 0.149 0.175 0.958
50 0.103 0.53 0.133 0.39 1.66
100 0.0562 0.88 0.0965 0.47 1.72
200 0.0303 0.89 0.0701 0.46 1.78
400 0.0158 0.94 0.0509 0.46 1.72
800 0.00839 0.91 0.0369 0.46 1.68

Table 2: Error for square wave at T = 800 in L1 and L2 norm, with corresponding order
(denoted by r) and in TV (total variation)
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sinusöıdal wave

SLWENO5 cubic splines d = 1 with limiter

N L1 r L2 r
25 0.0393 0.0301
50 0.00138 4.8 0.00106 4.8
100 4.29e-05 5 3.36e-05 5
200 1.34e-06 5 1.05e-06 5
400 4.17e-08 5 3.29e-08 5
800 1.29e-09 5 1.03e-09 5

L1 r L2 r
0.0526 0.0413
0.00661 3 0.0052 3
0.000827 3 0.00065 3
0.000103 3 8.12e-05 3
1.29e-05 3 1.01e-05 3
1.61e-06 3 1.27e-06 3

L1 r L2 r
0.395 0.311
0.058 2.8 0.0456 2.8

0.00741 3 0.00583 3
0.00093 3 0.00073 3
0.000116 3 9.13e-05 3
1.45e-05 3 1.14e-05 3

d = 2 with limiter d = 3 with limiter d = 4 with limiter

L1 r L2 r
0.00618 0.00486
0.000195 5 0.000153 5
6.11e-06 5 4.8e-06 5
1.91e-07 5 1.5e-07 5
5.98e-09 5 4.69e-09 5
1.87e-10 5 1.47e-10 5

L1 r L2 r
8.52e-05 6.7e-05
6.73e-07 7 5.29e-07 7
5.28e-09 7 4.15e-09 7
4.13e-11 7 3.24e-11 7
1.14e-13 8.5 1.03e-13 8.3
1.14e-13 0.0056 1.03e-13 0.00083

L1 r L2 r
1.21e-06 9.48e-07
2.39e-09 9 1.88e-09 9
4.67e-12 9 3.69e-12 9
1.14e-13 5.4 1.03e-13 5.2
1.14e-13 0.00058 1.03e-13 0.00018
1.14e-13 0.0055 1.03e-13 0.00064

quartic sine function

SLWENO5 cubic splines d = 1 with limiter

N L1 r L2 r
25 0.657 0.515
50 0.654 0.0052 0.515 0.00016
100 0.652 0.0046 0.514 0.0046
200 0.219 1.6 0.184 1.5
400 0.208 0.075 0.169 0.12
800 0.0625 1.7 0.0645 1.4

L1 r L2 r
0.654 0.515
0.654 2.1e-12 0.515 2.2e-12
0.619 0.081 0.487 0.082
0.227 1.4 0.19 1.4
0.0802 1.5 0.0647 1.6
0.013 2.6 0.0103 2.6

L1 r L2 r
0.655 0.515
0.654 0.00051 0.515 2.2e-06
0.654 8.7e-11 0.515 8.8e-11
0.623 0.07 0.491 0.071
0.241 1.4 0.2 1.3
0.0863 1.5 0.0696 1.5

d = 2 with limiter d = 4 with limiter d = 5 with limiter

L1 r L2 r
0.655 0.515
0.654 0.0013 0.515 1e-05
0.474 0.47 0.373 0.47
0.145 1.7 0.116 1.7
0.0119 3.6 0.0094 3.6

0.000391 4.9 0.000307 4.9

L1 r L2 r
0.654 0.515
0.516 0.34 0.406 0.35
0.151 1.8 0.118 1.8

0.00116 7 0.000911 7
2.41e-06 8.9 1.9e-06 8.9
4.79e-09 9 3.76e-09 9

L1 r L2 r
0.656 0.515
0.218 1.6 0.184 1.5
0.0745 1.6 0.0585 1.7

6.61e-05 10 5.19e-05 10
3.48e-08 11 2.73e-08 11
1.7e-11 11 1.35e-11 11

Table 3: On top: square wave, T = 800, N = 25, CFL = 0.25 (left, d = 3, center, d = 6 and
right d = 8); then, error for sinusoidal wave and quartic sine function, CFL = 2.5, T = 800
in L1 and L2 norm, with corresponding order denoted by r. The values in bold are the sole
values that differ with the schemes without limiter; in that case the value without limiter is
always 0.654
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Figure 5: Shu test case, T = 800, N = 200, CFL = 2.5
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4.3. Vlasov-Poisson system

We solve the Vlasov equation ∂tf + v∂xf + E∂vf = 0, coupled with the
Poisson equation; E = −∂xφ and −∂2

xφ = ρ−1, using Strang splitting. We also
have an initial condition f(t = 0, x, v) = f0(x, v). We can either first do the
advection in x: ∂tf+v∂xf = 0 or the advection in v: Poisson equation and then
∂tf+E∂vf = 0. In the numerical results we consider to do at each time step the
advection in x for ∆t/2, the advection in v for ∆t and then again the advection in
x for ∆t/2. Then unknowns are fni,j ' f(tn, xi, vj), with tn = n∆t. The phase-
space domain is [0, L] × [−vmax, vmax], and we have xi = i∆x, i = 0, . . . , Nx,
with ∆x = L/Nx and vj = −vmax + j∆v, j = 0, . . . , Nv, with ∆v = 2vmax/Nv,
with Nx, Nv ∈ N∗. We also have t ∈ [0, T ], with T ∈ R+, the final time, and the
time step is ∆t = T/M ≥ 0, with M ∈ N∗, the number of time steps.

Our aim is to evaluate the possible benefit of using our limiting strategy in
the context of Vlasov-Poisson simulations, by comparing with the SLWENO5
strategy (which has also the property of limiting the oscillations) and unlimited
schemes (cubic splines, as reference scheme, and the methods without activating
the limiting procedure). We have to check that the limiting strategy reasonably
works well for Vlasov-Poisson simulations and that the damping induced by
the limiter to prevent from numerical oscillations (inherent to the high order
unlimited schemes) does not degrade the numerical solution. In order to show
an interest of the method, we also have to find situations where the numerical
oscillations become critical and the limiting strategy has a real beneficial effect.
We restrict the study to 1d × 1d single species Vlasov-Poisson simulations us-
ing directional splitting with constant advection on uniform mesh and without
collisions (we refer for example to [15] for multi-species applications with sharp
gradients and non-uniform meshes, that could be further studied).
In the sequel, we consider first two standard test cases: the strong non linear
Landau damping and the two stream instability. We have not considered the
linear Landau damping, but we expect better conservation error than in the
strong non linear case (see for example [45]). Then, we consider the more chal-
lenging bump on tail test case, with three vortices. After that, we consider
again a two stream instability test case, but this time with 13 vortices. Finally,
we consider a beam test case initialized with (almost) discontinuous data and a
plasma expansion test.
We will compare always the same 8 methods: SLWENO5 and cubic splines (as
reference schemes), lim=Um+LC, DaTe and ”no lim” for d = 2 and d = 4 (for
seeing the influence of the limiters and the degree). We will change the phase
space resolution in order to see the influence of the grid (it is in particular im-
portant to see the results on coarse grids, since the refined grids are possible
here in 1d × 1d, but maybe not in higher dimensions). The time step will be
kept fixed to standard value ∆t = 0.1, and we stick to Strang splitting (higher
order may be envisaged [8, 3], but we focus here on the error made in phase
space, which is by the way often the most significant).
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4.3.1. Strong non linear Landau damping [20]

Initial condition is f0(x, v) = (1 + 0.5 cos(x/2)) 1√
2π
e−v

2/2. The domain is

[0, 4π]× [−vmax, vmax], with vmax = 6. We use ∆t = 0.1 and final time T = 100.
Numerical results are given on Figure 6. We represent the relative total energy
error, using initial analytical value. We remark that the limited schemes lead
to an increase of the total energy error; this was indeed also already observed
in [20]. Note that the results are kept in reasonable and comparable range as in
the literature [44, 45]. Lim behaves favorably w.r.t DaTe; SLWENO5 has the
worst conservation. The results improve on finer grids, but not with the degree.
The L1 norm (not shown) is better conserved for limited schemes, which is ex-
pected. The behavior of DaTe is similar to that of lim, with slight improvement
of L1 norm conservation. SLWENO5 behaves differently with better L1 norm
conservation. Changing the degree does not change a lot the results and going
to finer grids permits to have better results at longer times, but then there is
no improvement over even longer time.
The limited schemes induce some damping and generate more decrease of the
L2 norm (not shown) as already observed in [20]. The level of saturation of
relative L2 norm error is around 10%, for all the methods, the same as the
one observed in [20]. The SLWENO5 method diffuses much more and going to
higher order methods and finer grids leads to better L2 norm conservation for
longer times. The difference w.r.t the unlimited scheme is more pronounced for
the high degree case, and lim is better than DaTe.

4.3.2. Two stream instability I [45]

We consider initial condition as f0(x, v) = v2√
8π

(2 − cos(x/2))e−v
2/2. The

domain is [−2π, 2π]2. Numerical results are shown on Figure 7. We represent
the time evolution of the L2 norm error. We remark that the behavior of the
unlimited and limited schemes are very similar; there is less difference than for
the strong non linear Landau damping test case, maybe because the solution
is less oscillatory. For total energy and L1 norm (not shown), the results are
quite similar with the Landau damping (with better total energy conservation:
around 10−3 on the finest grids for the limited schemes).

4.3.3. Bump on tail [20]

As already mentioned in [51], the effect of limiters is not so much visible
on the two previous test cases. We now move to more delicate cases, where we
look also for longer time, where convergence is not reached. Initial condition is
f0(x, v) = (1+ε cos(kx))( 0.9√

2π
e−v

2/2 + 0.1
vth
√

2π
e−(v−u)2/(2v2th)), with u = 4.5, ε =

0.04, vth = 0.5 and k = 0.3. The domain is [0, 3 2π
k ] × [−vmax, vmax], with

vmax = 9. We use ∆t = 0.1 and final time T = 400. Numerical results are given
on Figure 8.

In this test, we have three small vortices, and generally only one will remain
if we wait long enough. In order to discretize them well in space, we use a
number of points in x that is a multiple of 3; otherwise, the method with limiter
is not able to keep the three vortices and some merging appears leading also to
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a break in electric energy, as observed in [20] for some methods. It has been
indeed observed in [39] that it is important that the number is a multiple of
three to represent correctly the periodicity of the solution; see also [16] where a
multiple of three is used.

The electric energy is shown on Figure 8. We observe that the SLWENO5
scheme damps much more, it is similar to Lagrange interpolation of degree 3 (see
[20]). Other limited schemes show also more damping than unlimited schemes,
but not as much as SLWENO5; they follow more the unlimited schemes, with
lim better than DaTe. For d = 4, we see again more differences between limited
and unlimited schemes, especially on coarse grids. The L1 norm (not shown)
is already quite well preserved on fine grids for the unlimited schemes. On
the coarsest grid, we see an improvement for limited schemes, in particular, for
d = 4.
Concerning the L2 norm (not shown), apart from SLWENO5 which diffuses
much more, the limited schemes show quite good conservation. There is an
improvement with the degree of interpolation (going from d = 2 to d = 4) on
the coarsest grid for long time, but no more on finer grids.
The total energy (not shown) is again less conserved for the limited schemes.
The situation improves, when the grid gets finer (certainly the limiter acts less).
On the other hand, for d = 4, the situation can be worse than for d = 2. The
scheme has to deal with a less damped solution at the beginning and has then
more difficulties to handle it for longer time.

4.3.4. Two stream instability II [20]

Initial condition is f0(x, v) = (1+ε cos(kx))( 1
2vth
√

2π
e−(v−u)2/(2v2th)+ 1

2vth
√

2π
e−(v+u)2/(2v2th)),

with ε = 0.05, u = 0.99, vth = 0.3 and k = 1. The domain is [0, 26π] × [−5, 5].
Numerical results are given on Figures 9, 10, 11, 12. We use ∆t = 0.1.

We have here 13 vortices and we wait long enough, so that the vortices
merge, a priori from numerical errors (we have no reference solution for this
test until T = 1000, but have run a reference solution valid until time T = 70,
on a 4096× 4096 grid, with 6-th order time splitting [8]). On Figures 9, 10, we
represent the electric energy. We can appreciate the convergence of the methods
until time T = 70 (the latter reference run is plotted in red). We clearly see the
effect of the limiting, which permits to damp the solution. Solutions at time
T = 70 (for the reference solution [computed on 4096 × 4096 grid with high
order splitting in time [8] leading to same result than with Strang splitting],
which is not shown to save place, we have still 13 vortices) are given on Figure
11. We see for all the methods, that the merging is already occurring. At final
time T = 1000 (Figure 12), we have generally 2 vortices that are remaining,
but the results different depending on the methods and grids. We observe more
oscillations for the unlimited schemes on the coarsest grids. SLWENO5 and
DaTe with d = 2 can lead to only one vortex at the final time. There is more
diffusion, because the limiter acts more.

26



4.3.5. Beam test case [57]

Initial condition is f0(x, v) = 4√
2πα

χ(x)e−v
2/(2α), with χ(x) = 1

2erf(x+1.2
β )−

1
2erf(x−1.2

β ) and α = 0.2. We choose β = 10−10 (instead of 0.3 in [57], so that

the initial data is (almost) discontinuous). Also we do not solve exactly the
previous Vlasov-Poisson system, but ∂tf + v

ε∂xf + (qE − x
ε )∂vf = 0, together

with electric field E satisfying 1
x∂x(xE) =

∫
fdv, on [0, L/2] and imposing that

E is odd function. E is given by E = 1
x

∫ x
0
sρ(t, s)dx and we use a trapezoidal

formula for the approximation of the integral. We choose ε = 0.7 and the domain
is [−L/2, L/2]× [−vmax, vmax], with L = 8 and vmax = 4. We choose q = 0.01,
instead of q = 1 in [57], in order to give a strong weight to the rotation. We take
T = 1000, instead of T = 100, in [57], in order to look for time long enough.
Note that we consider always the Strang splitting. We could however use more
adequate splitting, as for example the recently developed exact splitting [3], but
(as already said) as we consider here mainly the reconstruction in phase space,
we do not change here the scheme in time and also do not change the time step.
Numerical results are given on Figure 13, 14, 15. Initially, there are numerical
oscillations due to the discontinuous profile of the initial condition, leading to
much better L1 norm conservation for the limited schemes than for the unlimited
ones. However, the oscillations of the unlimited schemes permit to handle more
efficiently the solution in the long run, and unfortunately, the limited scheme
with high order interpolation (here d = 4) present bad qualitative behavior
(Figure 13), in particular on coarse grids. Such phenomenon does not occur for
d = 2 and also for SLWENO5, as the solution is more diffused. Again, lim is
better than DaTe. So we recommend to use the limiting strategy for d = 2;
for higher d, we can have some troubles; this can be due to dispersion effects.
Note that the method with limiter nevertheless still converges as seen also on
the L2 norm (Figure 15) and electric energy conservation (Figure 14), but the
convergence is faster for d = 2 than for d = 4.

4.3.6. Plasma expansion [29]

Initial condition is f0(x, v) = 1√
2π
χ(x−2π)e−v

2/2, with χ(x) = 1
2erf(x+0.5

β )−
1
2erf(x−0.5

β ). We choose β = 10−10, so that the initial data is almost discontin-

uous (in [29], the profile was Maxwellian in x and v, here we have considered
a sharper profile in x). The domain is [0, 4π] × [−vmax, vmax], with vmax = 6.
We use as usually ∆t = 0.1, with Strang splitting. Final time is T = 400.
Numerical results are shown on Figures 16,17,18,19,20,21. Note that for this
test, we have no convergence at final time, as indicated by the electric energy
(not shown); there the convergence is around T = 20, on the 4096 × 4096 grid
and around T = 10 on the 512 × 512 grid. On Figures 16, 17, we see the dis-
tribution function at time T = 400. On Figures 18,19, the relative error for
the L1 norm is given. On Figures 20,21, the relative error for the L2 norm is
given. We clearly see a difference for the cubic splines case: it better conserves
the L2 norm, while having a very bad conservation of L1 norm; this was indeed
already observed in [29]. We also see on Figures 16, 17, that the oscillations
are kept for the splines, and there is more diffusion for the other methods. The
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Lagrange methods without limiters have better L1 norm conservation (but still
not good), at the price of more diffusion. Finally the Lagrange methods with
limiters have really better L1 norm conservation, but with even more diffusion.
Note that the methods go to high diffusion with time; we can only improve the
results for a fixed final time, by refining the grid. Concerning the total energy
(not shown), it is again always better preserved without limiters, but one nice
feature is that it gets better for the limited schemes, while refining the grids;
all the schemes go to a certain saturation around 10−3, which could be further
enhanced by taking a smaller time step or considering a higher order in time
method (see for example [8] for a study of the behavior of the error for high
order time splitting schemes).

Conclusion and perspectives

We have revisited the monotonicity preserving schemes for semi-Lagrangian
schemes based on odd order Lagrange interpolation. A detailed numerical study
is performed for 1d constant advection and Vlasov-Poisson simulations. The new
scheme has a proven monotonicity preserving property and controls in particu-
lar the L1 norm, with some limited degradation of the L2 norm. Comparison
with cubic splines and SLWENO5 is made to show the accuracy of our method.
It turns out that the method is not completely satisfactory for high order inter-
polation, and we recommend to use it for d = 2, which is still less diffusive than
using SLWENO5. A better test for the detecting of smooth extrema, using a
wider stencil (which fits well for d = 2) might be considered for having better
results. The use of recently WENO type strategies with higher order meth-
ods might also better work (see [45],[13]). We also illustrate here, as a known
fact in the community, that the unlimited method is generally preferred; even
if initially sharper gradients are discretized with oscillations, in the long run,
the oscillations do not further develop and this is beneficial as the solution gets
smoother. The plasma expansion test however presents a real better behav-
ior for the limited schemes and thus shows a situation where the monotonicity
limiting is useful.

One natural extension of this work is to add global maximum principle (in
particular positivity), that we have here not added, permitting to measure the
L1 norm conservation as indicator of the well behavior of the scheme (if posi-
tivity is ensured, in our conservative setting, the L1 norm automatically exactly
satisfied). For this, we can follow the works [55, 49]. One other more demanding
extension is to consider the non constant advection. For this, we can work as in
[20] on the splitted conservative form, but this has the disadvantage of breaking
the conservation of constant states at the level of the equations [36]. Another
more common and popular method is to work on the 2D unsplit advective form
[46, 57, 36]. However, the conservation of mass is lost, and this is generally
amplified when using the limiters [57, 36]. A dual way is to work with the more
involved and technical 2D unsplit conservative form [17], which has been later
developed in a Semi-Lagrangian Discontinuous Galerkin context [6, 7]. Finally,
extensions on non-uniform meshes can also be envisioned.
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Figure 6: Time evolution of total energy error for non linear Landau damping test case
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Figure 7: Time evolution of L2 norm error for two stream instability I test case

Appendix A. Semi-Lagrangian scheme in flux formula

Appendix A.1. Construction of left flux formula (symbolized by L)

Suppose the foot of characteristic curve locates between xjL−1 and xjL , and
we write xjL − (xi − v∆t) = νLh, thus the numerical solution by interpolation

of degree one is given by fn+1
i = νLf

n
jL−1 + (1− νL)fnjL , and more generally of

odd degree 2d+ 1, with d ∈ N, is given by

fn+1
i =

d+1∑
`=−d

L`(1− νL)fnjL−1+` =

d+1∑
`=−d

L1−`(νL)fnjL−1+` =

d+1∑
`=−d

L`(νL)fnjL−`,

(A.1)

where L` is Lagrange basis function defined by L`(ν) =
∏d+1
k=−d,k 6=`

ν−k
`−k .

The Semi-Lagrangian scheme (A.1) can be written under a conservative

form. For d = 0, we have fn+1
i = fnjL − νL

(
fnjL − fnjL−1

)
. We shall more

generally write the Semi-Lagrangian scheme (A.1) with left flux formula, ex-
pressed as in (2)-(3). Thanks to this linear definition (3), the Semi-Lagrangian
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Figure 8: Time evolution of electric energy for bump on tail test case
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Figure 9: Time evolution of electric energy for short time (T = 70) for two stream instability
II test case
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Figure 10: Time evolution of electric energy for two stream instability II test case

scheme can be recast as

fn+1
i = fnjL − νL

(
d∑

`=−d
cL` (νL)fnjL+` −

d∑
`=−d

cL` (νL)fnjL+`−1

)

= −νLcLd (νL)fnjL+d + νLc
L
−d(νL)fnjL−d−1 − νL

d−1∑
`=−d,` 6=0

(cL` (νL)− cL`+1(νL))fnjL+`

+ (1− νL(cL0 (νL)− cL1 (νL)))fnjL .

Comparing the corresponding term in (A.1), we get

νLc
L
−d(νL) = Ld+1(νL),

−νL(cL` (νL)− cL`+1(νL)) = L−`(νL), ` = −d, . . . ,−1,

−νLcLd (νL) = L−d(νL),

−νL(cL` (νL)− cL`+1(νL)) = L−`(νL), ` = 1, . . . , d− 1,

1− νL(cL0 (νL)− cL1 (νL)) = L0(νL).

Notice that the above system holds for any νL ∈ (0, 1). Solving the linear system
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Figure 11: Two stream instability II at time T = 70
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Figure 12: Two stream instability II at time T = 1000
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Figure 13: Beam test case at time T = 1000
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Figure 14: Time evolution of electric energy for beam test case

Figure 15: Time evolution of relative L2 norm error for beam test case
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Figure 16: Plasma expansion at time T = 400 on 32 × 32 to 256 × 256 grids
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Figure 17: Plasma expansion at time T = 400 on 512 × 512 to 4096 × 4096 grids
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Figure 18: Time evolution of relative L1 norm error for plasma expansion test case on 32×32
to 256 × 256 grids. When we do not see the line of the plot, it means that the error is below
10−10.
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Figure 19: Time evolution of relative L1 norm error for plasma expansion test case on 512×512
to 4096 × 4096 grids
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Figure 20: Time evolution of relative L2 norm error for plasma expansion test case on 32×32
to 256 × 256 grids
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Figure 21: Time evolution of relative L2 norm error for plasma expansion test case on 512×512
to 4096 × 4096 grids
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yields, for any ν 6= 0, the functional coefficients

cL` (ν) =


1
ν

`−1∑
k=−d−1

L−k(ν), ` = −d, . . . , 0,

− 1
ν

d∑
k=`

L−k(ν), ` = 1, . . . , d,

(A.2)

since νcL−d(ν)+
∑d−1
`=−d−ν(cL` (ν)−cL`+1(ν))−νcLd (ν)+

∑d−1
`=1 −ν(cL` (ν)−cL`+1(ν))+

1−ν(cL0 (ν)−cL1 (ν)) = 1, and Ld+1(ν)+
∑d−1
`=−d L−`(ν)+L−d(ν)+

∑d−1
`=1 L−`(ν)+

L0(ν) =
∑d+1
`=−d L`(ν) = 1. For ν = 0, the cL` (ν) can be arbitrary from the sys-

tem; we define them by taking the limit of (A.2), as ν → 0, which is well
defined, since 0 is a root of Lk, for k 6= 0. For implementing issues, we can use
the following formulae which have no evaluation problem:

cL` (ν) =


`−1∑

k=−d−1

L̃−k(ν), ` = −d, . . . , 0,

−
d∑
k=`

L̃−k(ν), ` = 1, . . . , d,

(A.3)

with

L̃`(ν) =
1

`

d+1∏
k=−d,k 6∈{`,0}

ν − k
`− k , (A.4)

for ` = −d, . . . , d+ 1, ` 6= 0.

Appendix A.2. Construction of right flux formula (symbolized by R)

In order now to use the right flux formula, we suppose that the foot of
characteristic curve locates between xjR and xjR+1, and we can write (xi −
v∆t)−xjR = νRh, thus the numerical solution by interpolation of degree one is

now given by fn+1
i = (1− νR)fnjR + νRf

n
jR+1, and more generally of odd degree

2d+ 1, with d ∈ N, is given by

fn+1
i =

d+1∑
`=−d

L`(νR)fnjR+`. (A.5)

We get the same solution as before, but we now will make a link with the
conservative form using the right flux formula instead of the left flux formula.
We can write for d = 0, fn+1

i = fnjR + νR(fnjR+1 − fnjR), and more generally

write the Semi-Lagrangian scheme (A.5) with right flux formula, expressed as
in (4)-(5).
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Now, the Semi-Lagrangian scheme can be recast as

fn+1
i = fnjR + νR

(
d∑

`=−d
cR` (νR)fnjR+`+1 −

d∑
`=−d

cR` (νR)fnjR+`

)
= νRc

R
d (νR)fjR+d+1 − νRcR−d(νR)fjR−d

+ νR

d∑
`=−d+1, 6̀=0

(cR`−1(νR)− cR` (νR))fjR+` + (1 + νR(cR−1(νR)− cR0 (νR)))fjR .

Comparing the corresponding term in (A.5), we get

−νRcR−d(νR) = L−d(νR),

νR(cR`−1(νR)− cR` (νR)) = L`(νR), ` = −d+ 1, . . . ,−1,

νRc
R
d (νR) = Ld+1(νR),

νR(cR`−1(νR)− cR` (νR)) = L`(νR), ` = 1, . . . , d,

1 + νR(cR−1(νR)− cR0 (νR)) = L0(νR).

We find similarly the functional coefficients as follows

cR` (ν) =


− ∑̀
k=−d

L̃k(ν), ` = −d, . . . ,−1,

d+1∑
k=`+1

L̃k(ν), ` = 0, . . . , d,

(A.6)

where L̃ is the same as (A.4).
The functional coefficients cR` (ν) is also related to cL` (ν). Indeed, on the

one hand, we have, for ` = −d, . . . ,−1, cR` (ν) = − ∑̀
k=−d

L̃k(ν) and cL−`(ν) =

−
d∑

k=−`
L̃−k(ν) = − ∑̀

k=−d
L̃k(ν) = cR` (ν). On the other hand, we also have for

` = 0, . . . , d, cR` (ν) =
d+1∑
k=`+1

L̃k(ν) and cL−`(ν) =
−`−1∑

k=−d−1

L̃−k(ν) =
d+1∑
k=`+1

L̃k(ν) =

cR` (ν). We conclude that cR` (ν) = cL−`(ν), for ` = −d, . . . , d.

Appendix B. Explanations and proofs related to Section 3

Appendix B.1. Relation between the limiters for left and right flux formulae

Let us show a relation between MP constraints for left flux formula and right
flux formula in this part. As shown is Fig 1, we have jL − νL = jR + νR =
jL − 1 + 1 − νL. So, we get jR = jL − 1 and νR = 1 − νL. Thus for the right
flux formula (4), we have

fn+1
i = fnjL−1+(1−νL)

(
fRjR+1/2 − fRjR−1/2

)
= fnjL+fnjL−1−fnjL+(1−νL)

(
fRjR+1/2 − fRjR−1/2

)
,
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that is

fn+1
i = fnjL − (fnjL − (1− νL)fRjR+1/2) + fnjL−1 − (1− νL)fRjR−1/2.

From the unicity of the formula, we have

νLf
L
jL+1/2 = fnjL − (1− νL)fRjR+1/2 = fnjL − νRfRjR+1/2.

From (11), we have

νLM
(2,L)

jL−1/2
+
(
fnjL −M

(2,L)

jL−1/2

)
≤ νLfLjL+1/2 ≤ νLm

(2,L)

jL−1/2
+
(
fnjL −m

(2,L)

jL−1/2

)
,

and so
(1− νL)m

(2,L)

jL−1/2
≤ fnjL − νLfLjL+1/2 ≤ (1− νL)M

(2,L)

jL−1/2
,

which leads to
m

(2,L)

jL−1/2
≤ fRjR+1/2 ≤M

(2,L)

jL−1/2
.

We have also from m
(1,L)

jL+1/2
≤ fLjL+1/2 ≤M

(1,L)

jL+1/2
, that

νLm
(1,L)

jL+1/2
≤ νLfLjL+1/2 ≤ νLM

(1,L)

jL+1/2
,

leading to

fnjL − νLM
(1,L)

jL+1/2
≤ fnjL − νLfLjL+1/2 ≤ fnjL − νLm

(1,L)

jL+1/2
,

that is

fnjL − (1− νR)M
(1,L)

jL+1/2
≤ νRfRjR+1/2 ≤ fnjL − (1− νR)m

(1,L)

jL+1/2
,

which leads to

M
(1,L)

jL+1/2
+

1

νR
(fnjL −M

(1,L)

jL+1/2
) ≤ fRjR+1/2 ≤ m

(1,L)

jL+1/2
+

1

νR
(fnjL −m

(1,L)

jL+1/2
).

We deduce that when we have m
(1,R)

jR+1/2
= m

(2,L)

jL−1/2
, M

(1,R)

jR+1/2
= M

(2,L)

jL−1/2

and m
(2,R)

jR+1/2
= m

(1,L)

jL−1/2
, M

(2,R)

jR+1/2
= M

(1,L)

jL−1/2
, then the limiter for right flux

formula is equivalent to the one for left flux formula.

Appendix B.2. Proofs related to Section 3.3

Now let us prove Proposition 3.3.

Proof. We only consider the case with increasing data, the proof for decreasing
data follows the same arguments.

To prove the constraint (21) is MP, it is just necessary to verify

fmin,jL = fnjL and fmax,jL = min
(
fnjL+1,ΦνL,jL(fnjL−1)

)
.
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So the constraint (21) becomes

fnjL ≤ fLjL+1/2 ≤ min
(
fnjL+1,ΦνL,jL(fnjL−1)

)
. (B.1)

Moreover, since the constraint (21) is union of (18) and (20), we just need to
prove both (18) and (20) are equivalent to (B.1).

Let us first look at (18). We obviously have

max
(
mUm
jL+1/2,ΦνL,jL(max(MUm

jL−1/2, f
LC
j− ))

)
= max

(
fjL ,ΦνL,jL(max(fjL , f

LC
j− ))

)
= max

(
fjL ,min(fjL ,ΦνL,jL(fLCj− )

)
= fnjL .

On the other hand,

min
(
MUm
jL+1/2,ΦνL,jL(min(mUm

j−1/2, f
LC
j− ))

)
= min

(
fjL+1,ΦνL,jL(min(fjL−1, f

LC
j− ))

)
= min

(
fnjL+1,max(ΦνL,jL(fnjL−1),ΦνL,jL(fLCj− ))

)
.

We want to prove that, if the data are increasing, then ΦνL,jL(fnjL−1) ≥ ΦνL,jL(fLCj− ),

that is fnjL−1 ≤ fLCj− , so that

djL−1/2 = minmod(djL , djL−1) ≤ fnjL − fnjL−1. (B.2)

If djLdjL−1 ≤ 0 or (djL < 0 and djL−1 < 0), this is true, since fnjL ≥ fnjL−1.
Otherwise djL > 0 and djL−1 > 0, that is fnjL−1 − 2fnjL + fnjL+1 > 0 and

fnjL−2 − 2fnjL−1 + fnjL > 0. Thus (B.2) is true provided

fnjL−2 − 2fnjL−1 + fnjL ≤ fnjL − fnjL−1.

This is true thanks to
fnjL−2 − fnjL−1 ≤ 0.

Then let us look at (20). We similarly have

max
(

min(mUm
jL+1/2, f

LC
j+ ),ΦνL,jL(MUm

jL−1/2)
)

= max
(

min(fnjL , f
LC
j+ ),ΦνL,jL(fnjL)

)
= max

(
min(fnjL , f

LC
j+ ), fnjL

)
= fnjL .

On the other hand,

min
(

max(MUm
jL+1/2, f

LC
j+ ),ΦνL,jL(mUm

jL−1/2)
)

= min
(

max(fnjL+1, f
LC
j+ ),ΦνL,jL(fnjL−1)

)
.

We want to prove that, if the data are increasing, then fnjL+1 ≥ fLCj+ , so that

−djL+1/2 = −minmod(djL , djL+1) ≤ fnjL+1 − fnjL . (B.3)
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If djLdjL+1 ≥ 0 or (djL > 0 and djL+1 > 0), this is true, since fnjL+1 ≥ fnjL .
Otherwise djL < 0 and djL+1 < 0, that is fnjL−1 − 2fnjL + fnjL+1 < 0 and

fnjL − 2fnjL+1 + fnjL+2 < 0. Thus (B.3) is true provided

−fnjL + 2fnjL+1 − fnjL+2 ≤ fnjL+1 − fnjL .

This is true thanks to
fnjL+2 − fnjL+1 ≥ 0.

Therefore, we have proven the results.
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