Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and long-time convergence - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2022

Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and long-time convergence

Résumé

Consider the Langevin process, described by a vector (position,momentum) in Rd×Rd. Let O be a C2 open bounded and connected set of Rd. We prove the compactness of the semigroup of the Langevin process absorbed at the boundary of the domain D:=O×Rd. We then obtain the existence of a unique quasi-stationary distribution (QSD) for the Langevin process on D. We also provide a spectral interpretation of this QSD and obtain an exponential convergence of the Langevin process conditioned on non-absorption towards the QSD.
Fichier principal
Vignette du fichier
2101.11999.pdf (378.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03123442 , version 1 (27-01-2021)
hal-03123442 , version 2 (26-08-2021)
hal-03123442 , version 3 (27-09-2021)

Identifiants

Citer

Tony Lelièvre, Mouad Ramil, Julien Reygner. Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and long-time convergence. Stochastic Processes and their Applications, 2022, 144, pp.173-201. ⟨10.1016/j.spa.2021.11.005⟩. ⟨hal-03123442v3⟩
243 Consultations
241 Téléchargements

Altmetric

Partager

More