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Abstract

Consider the Langevin process, described by a vector (position,momentum) in R
d
× R

d. Let
O be a C

2 open bounded and connected set of R
d. We prove the compactness of the semigroup

of the Langevin process absorbed at the boundary of the domain D := O × R
d. We then obtain

the existence of a unique quasi-stationary distribution (QSD) for the Langevin process on D. We
also provide a spectral interpretation of this QSD and obtain an exponential convergence of the
Langevin process conditioned on non-absorption towards the QSD.
Mathematics Subject Classification. 35P05, 82C31, 47B07, 60H10.
Keywords. Langevin process, Quasi-stationary distribution, Compactness, Spectral decomposi-
tion.

1 Introduction

In statistical physics, the evolution of a molecular system at a given temperature is typically modeled
by the Langevin dynamics

{
dqt =M−1ptdt,

dpt = F (qt)dt− γM−1ptdt+
√
2γβ−1dBt,

(1)

where d = 3N for a number N of particles, (qt, pt) ∈ Rd×Rd denotes the set of positions and momenta
of the particles, M ∈ Rd×d is the mass matrix, F : Rd → Rd is the force acting on the particles, γ > 0
is the friction parameter, and β−1 = kBT with kB the Boltzmann constant and T the temperature of
the system.

Such dynamics are used in particular to compute thermodynamic and dynamic quantities, with
numerous applications in biology, chemistry and materials science. In many practical situations of
interest, the system remains trapped for very long times in subsets of the phase space, called metastable
states, see for example [14, Sections 6.3 and 6.4]. This makes the simulation of these systems over
the times of interest impossible. Typically, these states are defined in terms of positions only, and are
thus cylinders of the form D = O× Rd for (1). In such a case, it is expected that the process reaches
a local equilibrium distribution within the metastable state before leaving it. This distribution is
called the quasi-stationary distribution (QSD). Proving the existence of this limiting behavior is in
particular important to prove the consistency of accelerated dynamics algorithms, e.g. the parallel
replica method, see for example [18]. It is also the building block to justify the use of jump Markov
processes among the metastable states (kinetic Monte-Carlo or Markov state Models) to model the
evolution over long timescales [24, 23].
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While several works have already studied the properties of QSD for elliptic diffusion processes on a
smooth bounded domain O, to the best of our knowledge there are no available results for the Langevin
dynamics (1), which is not elliptic but only hypoelliptic, and for which the natural domain D = O×Rd

is not bounded, even if O is bounded. Building on several analytical results for the Langevin process (1)
obtained in [15], including a Gaussian upper-bound satisfied by the transition density of the Langevin
process, we obtain the compactness of the semigroup of the Langevin process absorbed at the boundary
of D. Applying the Krein-Rutman theorem we then obtain spectral properties on the infinitesimal
generator of the Langevin process on D with Dirichlet boundary conditions, and deduce the existence
and uniqueness of a QSD µ, as well as the fact that it describes the long-time behavior of the process
conditioned on non absorption.

Alternatively, a more probabilistic approach, based on general criteria developed by Champagnat
and Villemonais [2], is employed to obtain similar results in [19, Chapter 4]. As we were finishing this
work, we also became aware of the related work [9], using different techniques based on Lyapounov
functions.

Outline of the article. In Section 2, we state the main results, which are then proven in Section 3.

Notation. Let us introduce here some notation that will be used in the following. We denote
by x = (q, p) generic elements in R2d, and | · | the Euclidean norm both on Rd and on R2d. For a
measurable subset A of R2d, R∗

+ × R2d or R∗
+ × R2d × R2d,

• |A| is the Lebesgue measure of A,

• for 1 ≤ p ≤ ∞, Lp(A) is the set of Lp scalar-valued functions on A and ‖ · ‖Lp(A) the associated
norm,

• C(A) (resp. Cb(A)) is the set of scalar-valued continuous (resp. continuous and bounded)
functions on A,

• C∞(A) (resp. C∞
c (A)) is the set of scalar-valued C∞ (resp. C∞ with compact support) functions

on A.

We denote by ‖ · ‖∞ the sup norm on the Banach space Cb(A). For T a linear bounded operator on
Cb(A), we denote its operator norm by:

|||T |||Cb(A) := sup
f∈Cb(A),‖f‖∞≤1

‖Tf‖∞.

2 Main results

This section presents the main results we obtained.
As a motivation, we first recall in Section 2.1 what is known about the QSD of the overdamped

Langevin process.
In order to prepare the presentation of our main results, we state various analytical properties of

the Langevin process and the related kinetic Fokker-Planck equation in Section 2.2. The proofs of
these auxiliary results are detailed in [15].

Our main results, concerning the degenerate case of the Langevin process, are presented in Sec-
tion 2.3. We first state the compactness of the semigroup of the Langevin process absorbed at the
boundary of D. The existence of a unique QSD of the Langevin process in D is then obtained. Be-
sides, this QSD is shown to be the unique solution of an eigenvalue problem related to the infinitesimal
generator of the process (qt, pt)t≥0 with absorbing boundary conditions. Finally, this QSD attracts
all probability measures on D, at an exponential rate.

Let us conclude this introduction by recalling the definitions of the quasi-stationary and quasi-
limiting distributions, which are the central notions of this work, in a general setting. We refer to [4, 16]
for a complete introduction. Let E be a Polish space endowed with its Borel σ-algebra B(E), and
let (Xt)t≥0 be a time-homogeneous, strong Markov process in E with continuous sample-paths. For
any x ∈ E, we denote by Px the probability measure under which X0 = x almost surely, and for any
probability measure θ on E, we define

Pθ(·) :=
∫

E

Px(·)θ(dx).
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Let D be an open subset of E and τ∂ be the stopping time defined by

τ∂ := inf{t > 0 : Xt 6∈ D}.

Definition 2.1 (QSD). A probability measure µ on D is said to be a QSD on D of the process (Xt)t≥0,
if for all A ∈ B(D) := {A ∩D,A ∈ B(E)}, for all t ≥ 0,

Pµ(Xt ∈ A, τ∂ > t) = µ(A)Pµ(τ∂ > t). (2)

When Pµ(τ∂ > t) > 0, the identity (2) equivalently writes Pµ(Xt ∈ A|τ∂ > t) = µ(A).
A closely related notion is that of Quasi-Limiting Distribution (QLD), which is a probability

measure µ on D such that there exists a probability measure θ on D for which

∀A ∈ B(D), µ(A) = lim
t→∞

Pθ(Xt ∈ A|τ∂ > t). (3)

A QLD is necessarily a QSD (and the converse is obvious), and we say that µ "attracts" θ when (3)
holds. When a QSD attracts all Dirac masses on D, it is called a Yaglom limit.

Last, when X0 is initially distributed according to a QSD on D, the exit event from D of the
process (Xt)t≥0 satisfies the following properties, see [4, Theorems 2.2 and 2.6].

Proposition 2.2 (Exit event). Let µ be a QSD on D of the process (Xt)t≥0, then there exists λ0 ≥ 0
such that

1. τ∂ follows the exponential law of parameter λ0, that is to say Pµ(τ∂ > t) = e−λ0t for all t ≥ 0,

2. if λ0 > 0, Xτ∂ is independent of τ∂ .

In the former statement, the case λ0 = 0 means that τ∂ = ∞, Pµ-almost surely.

2.1 Elliptic case and the overdamped Langevin process

Quasi-stationary distributions on smooth bounded domains for elliptic diffusion processes, have been
widely studied in the literature. We refer for example to [7, 12, 3, 1]. Let us recall here some of their
important results.

Let β > 0 and F : R
d 7→ R

d satisfying the following assumption.

Assumption (F1). F ∈ C∞(Rd,Rd).

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and (Bt)t≥0 a d-dimensional (Ft)t≥0-Brownian
motion. Consider the overdamped Langevin process defined by

dqt = F (qt)dt+
√
2β−1dBt. (4)

Under Assumption (F1), the vector field F is locally Lipschitz continuous and therefore the stochas-
tic differential equation (4) possesses a unique strong solution (qt)0≤t<τ∞

defined up to some explosion
time τ∞ ∈ (0,+∞]. The overdamped Langevin process admits the following infinitesimal generator:

L = F · ∇+ β−1∆, (5)

with formal adjoint L∗
in L2(dx) given by:

L∗
= −div(F ·) + β−1∆.

Let O be an open set of Rd satisfying the following assumption.

Assumption (O1). O is an open C2 bounded connected set of Rd.

Let τ∂ := inf{t > 0 : qt /∈ O} be the first exit time from O of the process (qt)0≤t<τ∞
. Under

Assumption (O1), the vector field F is Lipschitz continuous on O and therefore τ∂ ≤ τ∞.
It has been shown in [1, 7, 12, 11] that the overdamped Langevin process admits a unique QSD

on O, which moreover satisfies the following properties.

Theorem 2.3 (QSD of the overdamped Langevin process). Under Assumptions (F1) and (O1), there
exists a unique QSD µ on O of the process (qt)t≥0. Furthermore,
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(i) there exists ψ ∈ C2(O) ∩ Cb(O) such that µ(dq) = ψ(q)dq, where dq is the Lebesgue measure on
Rd,

(ii) Span(ψ) is the eigenspace associated with the smallest eigenvalue λ of the operator −L∗
with

homogeneous Dirichlet boundary conditions on ∂O,

(iii) there exist C > 0 and α > 0 such that for all probability measures θ on O, for all t ≥ 0,

∥∥Pθ(qt ∈ ·|τ∂ > t)− µ(·)
∥∥
TV

≤ Ce−αt,

where ‖ · ‖TV is the total-variation norm on the space of bounded signed measures on R
d.

Multiple approaches are used in the literature to obtain the properties above. In the conservative
case F = −∇V , under suitable assumptions on V we have τ∞ = ∞ and the process (qt)t≥0 is reversible
with respect to the measure e−βV (q)dq. As a consequence, L is symmetric with respect to the canonical
scalar product on L2(e−βV (q)dq) and since the inverse of the operator L with homogeneous Dirichlet
boundary condition on ∂O is compact from L2(e−βV (q)dq) to L2(e−βV (q)dq), one can obtain a discrete
spectral decomposition of L with this boundary condition. This then yields the theorem above, see
[12].

In the general case when F is non conservative, the process (qt)t≥0 is not necessarily reversible
but a spectral approach can still be used. In [7] the authors prove the compactness of the semigroup

(P
O
t )t≥0 defined on the Banach space

{f ∈ Cb(O) : ∀q ∈ O, f(q) = d∂(q)g(q) s.t. g is uniformly continuous on O},

where d∂ is the Euclidean distance to the boundary ∂O, by

P
O
t f : x ∈ D 7→ Eq [f(qt)1τ∂>t] ,

using sharp estimates of the Green function of L shown in [8]. Then, applying Krein-Rutman theorem

to the operator P
O
t , the authors manage to deduce Theorem 2.3.

Last, a more probabilistic approach is developed in [1] where the authors prove that the semi-

group (P
O
t )t≥0 satisfies a gradient estimate, irreducibility conditions and a controlled probability of

absorption near the boundary ∂O which also yields Theorem 2.3.

2.2 Analytical properties of the Langevin process

In this section we recall some results from [15] that will be used henceforth. Let γ ∈ R, σ > 0. Under
Assumption (F1), the stochastic differential equation

{
dqt = ptdt,

dpt = F (qt)dt− γptdt+ σdBt,
(6)

possesses a unique strong solution (Xt = (qt, pt))0≤t<τ∞ , defined up to some explosion time τ∞ ∈
(0,+∞]. Notice that, compared to (1), we consider here and henceforth the mass to be identity
without loss of generality (see the change of variables in [13, Equation (3.117)]), so that momentum is
identified with velocity. Besides, we consider the general case γ ∈ R and σ > 0 not necessarily related
to γ.

The infinitesimal generator of the Langevin process is the operator L, defined for (q, p) ∈ Rd × Rd

by:

L = p · ∇q + F (q) · ∇p − γp · ∇p +
σ2

2
∆p, (7)

with formal adjoint L∗ in L2(dx) given by:

L∗ = −p · ∇q − F (q) · ∇p + γdivp(p·) +
σ2

2
∆p. (8)

Consider now the following strenghtening of Assumption (F1).

Assumption (F2). F ∈ C∞(Rd,Rd) and F is bounded and globally Lipschitz continuous on Rd.
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Under Assumption (F2), τ∞ = ∞ almost surely and the Langevin process (6) admits a smooth
transition density pt(x, y) [21, Corollary 7.2], which is positive [10, Corollary 3.3]. In addition, this
density admits an explicit Gaussian upper-bound, see [15, Theorem 2.19].

Theorem 2.4 (Gaussian upper-bound). Under Assumption (F2), the transition density pt(x, y) of the
Langevin process (Xt)t≥0 satisfying (6) is such that for all α ∈ (0, 1), there exists cα > 0, depending
only on α, such that for all T > 0 and t ∈ (0, T ], for all x, y ∈ R2d,

pt(x, y) ≤ Ct,T p̂
(α)
t (x, y), (9)

where Ct,T := 1
αd

∑∞
j=0

(‖F‖∞cα(1+
√
γ−T )

√
πt)

j

σjΓ( j+1
2 )

, γ− = max(−γ, 0) is the negative part of γ ∈ R, Γ is

the Gamma function and p̂
(α)
t (x, y) is the transition density of the Gaussian process (q̂

(α)
t , p̂

(α)
t )t≥0

defined by 


dq̂

(α)
t = p̂

(α)
t dt,

dp̂
(α)
t = −γp̂(α)t dt+

σ√
α
dBt.

(10)

We now let O ⊂ Rd satisfy Assumption (O1) and consider the following domain of R2d,

D := O × R
d,

where the first coordinate (position) is constrained to remain on the bounded open set O and the
second one (velocity) remains free. This is the natural phase space domain of the Langevin process
absorbed when leaving O.

For q ∈ ∂O, let n(q) ∈ Rd be the unitary outward normal vector to O at q ∈ ∂O. We introduce
the following partition of ∂D:

Γ+ = {(q, p) ∈ ∂O × R
d : p · n(q) > 0},

Γ− = {(q, p) ∈ ∂O × R
d : p · n(q) < 0},

Γ0 = {(q, p) ∈ ∂O × R
d : p · n(q) = 0}.

Let τ∂ be the first exit time from D of the Langevin process (Xt)t≥0 in (6), i.e.

τ∂ = inf{t > 0 : Xt /∈ D}.

Under Assumptions (F1) and (O1), F is Lipschitz continuous on O and therefore τ∂ ≤ τ∞.

Remark 2.5. Friedman’s uniqueness result [5, Theorem 5.2.1.] ensures that the trajectories (Xt)0≤t≤τ∂
do not depend on the values of F outside of O. Therefore, whenever we are interested in quantities
which only depend on the absorbed Langevin process, there is no loss of generality in modifying F
outside of O so that it satisfies Assumption (F2).

The Langevin process absorbed outside of the domain D has been thoroughly studied in [15].
Some of the results associated to its transition density are reminded below and can be found in [15,
Theorem 2.20, Corollary 2.21].

Theorem 2.6 (Transition density of the absorbed Langevin process). Under Assumptions (F1)
and (O1), there exists a function

(t, x, y) 7→ pDt (x, y) ∈ C∞(R∗
+ ×D ×D) ∩ C(R∗

+ ×D ×D)

which satisfies for all t > 0,

• pDt (x, y) > 0 for all x /∈ Γ+ ∪ Γ0 and y /∈ Γ− ∪ Γ0,

• pDt (x, y) = 0 if x ∈ Γ+ ∪ Γ0 or if y ∈ Γ− ∪ Γ0,

and is such that for all t > 0, x ∈ D and A ∈ B(D),

Px(Xt ∈ A, τ∂ > t) =

∫

A

pDt (x, y)dy.
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Moreover, for f ∈ Cb(D), the functions u, v defined by:

∀t > 0, ∀x ∈ D, u(t, x) :=

∫

D

pDt (x, y)f(y)dy, v(t, x) :=

∫

D

pDt (y, x)f(y)dy,

are in C∞(R∗
+ ×D) and satisfy:

∀t > 0, ∀x ∈ D, ∂tu(t, x) = Lu(t, x), ∂tv(t, x) = L∗v(t, x).

Finally, pDt (x, y) also satisfies the Gaussian upper-bound (9) where ‖F‖∞ is replaced with ‖F‖L∞(D)

in Ct,T .

We conclude this subsection with a time-reversibility result from [15, Section 6.1] linking the
transition densities of the Langevin process (6) and of the process called "adjoint" Langevin process
(X̃t = (q̃t, p̃t))t≥0 with infinitesimal generator L̃ := L∗ − dγ, and satisfying the following SDE:

{
dq̃t = −p̃tdt,
dp̃t = −F (q̃t)dt+ γp̃tdt+ σdBt.

(11)

Let τ̃∂ be the first exit time from D of X̃t, i.e. τ̃∂ := inf{t > 0 : X̃t /∈ D}. The transition kernel
Px(X̃t ∈ ·, τ̃∂ > t) admits a transition density p̃Dt (x, y) which satisfies the following equality, see [15,
Theorem 6.2].

Theorem 2.7 (Time-reversibility). Under Assumptions (F1) and (O1),

∀t > 0, ∀x, y ∈ D, pDt (x, y) = edγtp̃Dt (y, x). (12)

2.3 Compactness and QSD of the Langevin process

In this section we state the main results proven in this work. Let us emphasize the fact that the
results stated in the present section hold for any γ ∈ R, σ > 0 and F satisfying Assumption (F1). The
first result states the compactness of the semigroup (PDt )t≥0, defined below, based on the Gaussian
estimate from Theorem 2.6, which implies that pDt ∈ L∞(D × D) ∩ L1(D × D) for all t > 0 (see
Lemma 3.1).

Theorem 2.8 (Semigroup of the absorbed Langevin process). Let Assumptions (O1) and (F1) hold.
For any t ≥ 0, p ∈ [1,+∞] and f ∈ Lp(D), the quantity

PDt f : x ∈ D 7→ Ex [1τ∂>tf(Xt)] (13)

is well-defined. Besides, let p, q ∈ [1,+∞].

(i) The family of operators (PDt )t≥0 is a semigroup on Lp(D) and on Cb(D).

(ii) For any t > 0, the operator PDt maps Lp(D) into Lq(D) and into Cb(D) continuously.

(iii) For any t > 0, the operator PDt is compact from Lp(D) to Lp(D), and from Cb(D) to Cb(D).

Remark 2.9. As an alternative to our probabilistic approach, we expect that a similar statement
might also be deduced from the subelliptic estimates on the kinetic Fokker-Planck operator recently
obtained by Nier [17] in a very general framework (both on the geometry of the underlying phase space
and on the boundary conditions).

Similarly, one can define the family of operators (P̃Dt )t≥0 associated to the transition density p̃Dt ,
given for f ∈ L∞(D) by

P̃Dt f : x ∈ D 7→ Ex

[
1τ̃∂>tf(X̃t)

]
. (14)

Remark 2.10. It follows from Theorem 2.7 and Lemma 3.1 that p̃Dt ∈ L∞(D × D) ∩ L1(D × D)
for all t > 0. Therefore, following the proof of Theorem 2.8 in Section 3.1, one can also obtain that
the family (P̃Dt )t≥0 defined in (14) satisfies the properties detailed in Theorem 2.8. In particular,

P̃Dt : Cb(D) → Cb(D) and P̃Dt : Lp(D) → Lp(D) for p ∈ [1,+∞] are compact.

Our second result focuses on the spectral radii of (PDt )t≥0 and (P̃Dt )t≥0. Let us recall here the
definition of the spectral radius of a bounded operator T on the Banach space Cb(D), which can be
found in [20, p. 192].
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Definition 2.11 (Spectrum and spectral radius). Let T be a bounded real operator on Cb(D) and I
the identity operator. Let us call σ(T ) the spectrum of T which is defined by:

σ(T ) := {λ ∈ C : T − λI does not have an inverse that is a bounded linear operator}.

The spectral radius r(T ) of T is then defined as:

r(T ) := sup
λ∈σ(T )

|λ|.

We obtain the following result on the operators PDt and P̃Dt (defined in (13) and (14)) and their
spectral radius.

Theorem 2.12 (Spectral properties of PDt and P̃Dt ). Under Assumptions (F1) and (O1), there exists
λ0 > 0 such that for all t ≥ 0,

r(PDt ) = e−λ0t, r(P̃Dt ) = e−(λ0+dγ)t.

Besides, there exist unique functions φ, ψ ∈ Cb(D), up to a multiplicative constant, such that for all
t ≥ 0,

PDt φ = e−λ0tφ and P̃Dt ψ = e−(λ0+dγ)tψ.

Last, φ, ψ ∈ L1(D) ∩ C∞(D) and

• φ > 0 on D ∪ Γ−, φ = 0 on Γ+ ∪ Γ0 and Lφ = −λ0φ on D,

• ψ > 0 on D ∪ Γ+, ψ = 0 on Γ− ∪ Γ0 and L∗ψ = −λ0ψ on D.

In the following, we choose φ and ψ such that
∫
D
φ(x)dx =

∫
D
ψ(x)dx = 1. The proof of this

theorem relies on the application of the Krein-Rutman theorem [22, p. 313] to the compact operators
PDt and P̃Dt on the Banach space Cb(D). We are able to deduce from this result the existence of a
unique QSD on D for the processes (Xt)t≥0 and (X̃t)t≥0.

Theorem 2.13 (Existence and uniqueness of a QSD). Let Assumptions (F1) and (O1) hold. Let µ
and µ̃ be the following probability measures on D:

∀A ∈ B(D), µ(A) =

∫

A

ψ(x)dx, µ̃(A) =

∫

A

φ(x)dx. (15)

Then µ (resp. µ̃) is the unique QSD on D of (Xt)t≥0 (resp. (X̃t)t≥0) and for all t ≥ 0,

Pµ(τ∂ > t) = e−λ0t, Pµ̃(τ̃∂ > t) = e−(λ0+dγ)t. (16)

Moreover, one can characterize the law of Xτ∂ (resp. X̃τ̃∂ ) when X0 ∼ µ (resp. X̃0 ∼ µ̃) using the
following theorem.

Theorem 2.14. For all t ≥ 0, f ∈ L∞(∂D),

∫

D

ψ(q, p)E(q,p) [f(qτ∂ , pτ∂ )1τ∂≤t] dqdp =
1− e−λ0t

λ0

∫

∂D

ψ(q, p)f(q, p) |p · n(q)|σ∂O(dq)dp,
∫

D

φ(q, p)E(q,p) [f(q̃τ̃∂ , p̃τ̃∂ )1τ̃∂≤t] dqdp =
1− e−(λ0+dγ)t

λ0 + dγ

∫

∂D

φ(q, p)f(q, p) |p · n(q)| σ∂O(dq)dp,

where σ∂O is the surface measure on ∂O.

In fact, taking t→ ∞, one obtain the following description of the first exit event starting from the
QSD on D.

Corollary 2.15 (First exit point starting from the QSD). If X0 ∼ µ,

Xτ∂ ∼ 1

λ0
|p · n(q)|ψ(q, p)σ∂O(dq)dp.

Similarly, if X̃0 ∼ µ̃,

X̃τ̃∂ ∼ 1

λ0 + dγ
|p · n(q)| φ(q, p)σ∂O(dq)dp.
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Furthermore, the densities of the QSD are the unique classical solutions to an eigenvalue problem.

Theorem 2.16 (Spectral interpretation of the QSD). Under Assumptions (F1) and (O1), there
exists a unique couple (λ, η) (resp. (λ∗, η∗)), up to a multiplicative constant on η (resp. η∗) such that
η ∈ C2(D)∩Cb(D∪Γ+) (resp. η∗ ∈ C2(D)∩Cb(D∪Γ−)) is a non-zero, non-negative classical solution
to the following problem

{
Lη(x) = −λη(x) x ∈ D,

η(x) = 0 x ∈ Γ+,
resp.

{
L∗η∗(x) = −λ∗η∗(x) x ∈ D,

η∗(x) = 0 x ∈ Γ−.
(17)

Moreover, η ∈ L1(D), λ = λ0 and η
∫

D
η
= φ (resp. η∗ ∈ L1(D), λ∗ = λ0 and η∗

∫

D
η∗

= ψ).

Remark 2.17. In particular, it follows from the expression of the spectral radii in Theorem 2.12 that
λ0 is the smallest eigenvalue associated with the operators −L and −L∗.

Last, we are able to obtain the following long-time asymptotics of the operator PDt on the Banach
space L∞(D).

Theorem 2.18 (Long-time asymptotics). Let Assumptions (F1) and (O1) hold. Let α∗ be defined by

e−(λ0+α
∗) := sup

z∈σ(PD
1 )\{e−λ0}

|z|. (18)

Then α∗ ∈ (0,+∞], and for all α ∈ [0, α∗), there exists Cα > 0 such that for all t ≥ 0, for all
f ∈ L∞(D), ∥∥∥∥P

D
t f − e−λ0t

φ⊗ ψ(f)∫
D φψ

∥∥∥∥
∞

≤ Cα‖f‖L∞(D)e
−(λ0+α)t, (19)

where the tensor product φ⊗ ψ is defined by: for any f ∈ L∞(D), φ⊗ ψ(f) = (
∫
D
ψf)φ.

Remark 2.19. In particular, for f constant equal to 1, Theorem 2.18 ensures the existence of a
constant C > 0 such that for all x ∈ D, t > 0,

Px(τ∂ > t) ≤ Ce−λ0t.

This ensures in particular that for any λ ∈ [0, λ0),

sup
x∈D

Ex

[
eλτ∂

]
<∞.

Remark 2.20. A similar result can be deduced in the Banach space Lp(D) for any p ≥ 1 using the
compactness property of PDt in Lp(D) obtained in Theorem 2.8.

We deduce from the previous result that the QSD µ attracts all probability measures θ on D at
an exponential rate.

Theorem 2.21 (Convergence to the QSD in total variation). Under the assumptions of Theorem 2.18,
for all α ∈ [0, α∗), there exists C′

α > 0 such that, for all t ≥ 0, for any probability measure θ on D,
Pθ(τ∂ > t) > 0, and

‖Pθ (Xt ∈ ·|τ∂ > t)− µ‖TV ≤ C′
α∫

D
φdθ

e−αt, (20)

where ‖ · ‖TV denotes the total-variation norm on the space of bounded signed measures on R2d.

Remark 2.22. The convergence speed and the prefactor are similar to what is obtained in [19, Chapter
4] using the results by Champagnat and Villemonais in [2].

Remark 2.23. Similar statements for Theorems 2.18 and 2.21 can be obtained for the adjoint
Langevin process (X̃t)t≥0 (11) following the exact same proofs and using the equality in Theorem 2.7
satisfied by its transition density p̃Dt (x, y).

The proofs of the theorems above are provided in the next Section.
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3 Proofs

This section is organized as follows. In Section 3.1, we prove Theorem 2.8 and we prove Theorem 2.12
in Section 3.2. In Section 3.3 we obtain Theorems 2.13, 2.14 and 2.16 and finally, Section 3.4 is devoted
to the proofs of Theorems 2.18 and 2.21.

3.1 Proof of Theorem 2.8

We prove in this section the results of Theorem 2.8 and in particular the compactness of the semi-
group (PDt )t≥0. The crucial ingredient is the Gaussian upper-bound satisfied by the transition density
pDt (see Theorem 2.6): for any α ∈ (0, 1) and for t > 0, there exists Ct,t > 0 such that for all x, y ∈ D,

pDt (x, y) ≤ Ct,tp̂
(α)
t (x, y), (21)

where p̂
(α)
t (x, y) is the transition density of the Gaussian process (q̂

(α)
t , p̂

(α)
t )t≥0 defined in (10).

Let Φ1,Φ2 be the following positive continuous functions on R:

Φ1 : ρ ∈ R 7→
{

1−e−ρ

ρ if ρ 6= 0,

1 if ρ = 0,
(22)

Φ2 : ρ ∈ R 7→
{

3
2ρ3

[
2ρ− 3 + 4e−ρ − e−2ρ

]
if ρ 6= 0,

1 if ρ = 0.
(23)

One can show, see [15, Section 5.1], that for all t ≥ 0 and α ∈ (0, 1], the vector (q̂
(α)
t , p̂

(α)
t ) admits

the following law under P(q,p)

(
q̂
(α)
t

p̂
(α)
t

)
∼ N2d

((
mq(t)
mp(t)

)
,
C(t)

α

)
, (24)

where the mean vector is

mq(t) := q + tpΦ1(γt), mp(t) := pe−γt,

and the matrix C(t) is

C(t) :=

(
cqq(t)Id cqp(t)Id
cqp(t)Id cpp(t)Id

)
,

where Id is the identity matrix in Rd×d and

cqq(t) :=
σ2t3

3
Φ2(γt), cqp(t) :=

σ2t2

2
Φ1(γt)

2, cpp(t) := σ2tΦ1(2γt). (25)

The determinant of the covariance matrix C(t)
α is det

(
C(t)
α

)
=
(
σ4t4

12α2φ(γt)
)d

where φ is the positive

continuous function defined by

φ : ρ ∈ R 7→ 4Φ2(ρ)Φ1(2ρ)− 3Φ1(ρ)
4 =

{
6(1−e−ρ)

ρ4 [−2 + ρ+ (2 + ρ)e−ρ] if ρ 6= 0,

1 if ρ = 0.
(26)

Using the Gaussian upper-bound (21) let us now prove that pDt ∈ L∞(D ×D) ∩ L1(D ×D).

Lemma 3.1 (pDt ∈ L∞(D ×D) ∩ L1(D ×D)). Let Assumptions (O1) and (F1) hold. For all t > 0,
pDt is bounded on D ×D and ∫∫

D×D
pDt (x, y)dxdy <∞. (27)

Proof. Let t > 0 and α ∈ (0, 1). By (21), for all x, y ∈ D,

pDt (x, y) ≤
Ct,t√

(2π)2ddet
(
C(t)
α

) =
Ct,t√

(2π)2d
(
σ4t4

12α2φ(γt)
)d ,

9



which ensures that pDt ∈ L∞(D ×D). To obtain that pDt ∈ L1(D ×D), we prove that

∫∫

D×D
p̂
(α)
t (x, y)dxdy <∞.

Let us first integrate p̂
(α)
t ((q, p), (q′, p′)) with respect to p, p′ ∈ Rd using Fubini-Tonelli’s theorem.

Since p̂
(α)
t ((q, p), (q′, p′)) is the transition density of the Gaussian process (q̂

(α)
t , p̂

(α)
t )t≥0, one can obtain

an explicit expression of
∫
Rd p̂

(α)
t ((q, p), (q′, p′))dp′ which corresponds to the marginal density of q̂

(α)
t

under P(q,p). Since, under P(q,p),

q̂
(α)
t ∼ Nd

(
q + tpΦ1(γt),

cqq(t)

α
Id

)
,

cqq(t)

α
=
σ2t3

3α
Φ2(γt),

so that

∫

Rd

p̂
(α)
t ((q, p), (q′, p′))dp′ =

(3α)d/2

(2πσ2t3Φ2(γt))
d/2

e
− 3α

2σ2t3Φ2(γt)
|q′−q−tpΦ1(γt)|2

where Φ1 and Φ2 are defined in (22) and (23). Then,

∫

Rd

∫

Rd

p̂
(α)
t ((q, p), (q′, p′))dpdp′ =

(3α)d/2

(2πσ2t3Φ2(γt))
d/2

∫

Rd

e
− 3α

2σ2t3Φ2(γt)
|q′−q−tpΦ1(γt)|2

dp

=
1

tdΦ1(γt)d
.

Consequently, ∫∫

D×D
p̂
(α)
t (x, y)dxdy =

|O|2
tdΦ1(γt)d

,

which concludes the proof.

Remark 3.2. This ensures in particular that pDt ∈ Lq(D ×D) for any q ∈ [1,+∞] and t > 0.

Let us now prove Theorem 2.8.

Proof of Theorem 2.8. It follows from Remark 3.2 that for all t > 0,
∫∫

D×D
pDt (x, y)

2dxdy <∞.

Therefore, by Theorems VI.22 and VI.23 in [20], the operator PDt is a compact operator from L2(D)
to L2(D).

Let s > 0. In Step 1, we show that PDs maps Lp(D), p ∈ [1,+∞), continuously into L∞(D).
In Step 2, we show that PDs maps L∞(D) continuously into Lq(D), q ∈ [1,+∞). In Step 3, we
show that PDs maps L∞(D) continuously into Cb(D), and that PDs satisfies a semigroup property. We
conclude the proof in Step 4.

Step 1. Let s > 0, p ≥ 1. Let us prove that PDs maps Lp(D) continuously into L∞(D). Recall that
by Lemma 3.1, ‖pDs ‖L∞(D×D) < +∞. Therefore if p = 1, then for any f ∈ L1(D) we have

‖PDs f‖L∞(D) ≤ ‖pDs ‖L∞(D×D)‖f‖L1(D),

while if p ∈ (1,+∞), then for any f ∈ Lp(D) and x ∈ D, letting q ∈ (1,+∞) be such that 1/p+1/q = 1,
we get by Hölder’s inequality

∣∣PDs f(x)
∣∣ ≤ ‖pDs (x, ·)‖Lq(D)‖f‖Lp(D)

≤
(
‖pDs ‖q−1

L∞(D×D)P(τ
x
∂ > s)

)1/q
‖f‖Lp(D)

≤ ‖pDs ‖
q−1
q

L∞(D×D)‖f‖Lp(D),

which yields ‖PDs f‖L∞(D) ≤ ‖pDs ‖
q−1
q

L∞(D×D)‖f‖Lp(D).
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Step 2. Let s > 0, q ≥ 1. Let us prove that PDs maps L∞(D) continuously into Lq(D). Let
f ∈ L∞(D). For x ∈ D, one has that

∣∣∣∣P
D
s f(x)

∣∣∣∣
q

=

∣∣∣∣
∫

D

pDs (x, y)f(y)dy

∣∣∣∣
q

≤ P(τx∂ > s)q‖f‖qL∞(D)

≤ P(τx∂ > s)‖f‖qL∞(D).

Therefore, using Lemma 3.1 we get ‖PDs f‖Lq(D) ≤ ‖pDs ‖1/qL1(D×D)‖f‖L∞(D).

Step 3. We first deduce from the Markov property that

PDt+sf(x) = Ex [f(Xt+s)1τ∂>t+s] = Ex

[
1τ∂>tP

D
s f(Xt)

]
= PDt P

D
s f,

which together with the obvious observation that PD0 f = f , shows that (PDt )t≥0 is a semigroup on
Lp(D) for any p ∈ [1,+∞] by Steps 1 and 2. Let s > 0 and f ∈ L∞(D). Since for all x ∈ D,

PDs f(x) =

∫

D

pDs/2(x, y)P
D
s/2f(y)dy,

and PDs/2 maps L∞(D) into L1(D) by Step 2, then it is an immediate application of the dominated

convergence theorem along with the continuity and boundedness of x ∈ D 7→ pDs/2(x, y) in Theorem 2.6

that PDs f ∈ Cb(D). Besides, one has obviously

‖PDs f‖Cb(D) := ‖PDs f‖∞ ≤ ‖f‖L∞(D),

so that PDs maps L∞(D) into Cb(D) continuously. Notice that (PDt )t≥0 is thus also a semigroup on
Cb(D).

Step 4. In order to study compactness, we shall use repeatedly the fact that the composition of a
continuous operator with a compact operator is a compact operator.

Let p ∈ [1,+∞] and t > 0. Writing PDt = PDt/3P
D
t/3P

D
t/3, using the continuity of the mappings

PDt/3 : Lp(D) → L2(D) and PDt/3 : L2(D) → Lp(D), and the compactness of PDt/3 : L2(D) → L2(D), we

obtain that PDt is a compact operator from Lp(D) to Lp(D).
Similarly, writing PDt = ιPDt/2P

D
t/2, where ι is the injection from Cb(D) to L∞(D), using the

continuity of the operators ι and Pt/2 : L∞(D) → Cb(D), as well as the compactness of the operator
PDt/2 : L∞(D) → L∞(D) that we have just proven, we conclude that PDt is a compact operator from

Cb(D) to Cb(D).

3.2 Proof of Theorem 2.12

Using the compactness properties obtained in Theorem 2.8 and Remark 2.10, we apply the Krein-
Rutman theorem to the operators PDt and P̃Dt defined in (13) and (14). In order to do that let us
first recall an important property satisfied by the spectral radius of a bounded operator, see [20, p.
192, Theorem VI.6].

Proposition 3.3 (Gelfand’s formula). Let T be a bounded real operator on Cb(D). One has that

r(T ) = lim
n→∞

|||T n|||1/nCb(D)
.

The Krein-Rutman theorem, recalled below, basically states that under some conditions on the
bounded operator T , the spectral radius r(T ) is also an eigenvalue of the operator T . The following
version of the Krein-Rutman theorem can be found in [22, p. 313].

Theorem 3.4 (Krein-Rutman). Let K ⊂ Cb(D) be a convex cone such that the set {f − g : f, g ∈ K}
is dense in Cb(D). Let T : Cb(D) 7→ Cb(D) be a compact operator such that T (K) ⊂ K, and assume
that its spectral radius r(T ) is strictly positive. Then, r(T ) is an eigenvalue of T with an eigenvector
u in K \ {0} such that T (u) = r(T )u.
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Let K be the following convex cone of Cb(D),

K := {f ∈ Cb(D) : f ≥ 0}. (28)

The density of {f − g : f, g ∈ K} in Cb(D) is immediate. Our goal now is to apply the Krein-Rutman
theorem above to the compact operators PDt and P̃Dt , for t > 0, on the cone K. In order to do that
we need to prove the positivity of the spectral radii r(PDt ) and r(P̃Dt ) for t > 0.

Proposition 3.5 (Spectral radius positivity). Under Assumptions (F1) and (O1), for all t > 0,
r(PDt ) > 0 and r(P̃Dt ) > 0.

Proof. Let t > 0. We prove here that r(PDt ) > 0 which relies merely on the positivity of its transition
density pDt (·, ·) on D ×D, see Theorem 2.6. Besides, the positivity of the transition density p̃Dt (·, ·)
easily follows from the equality in Theorem 2.7, therefore the exact same proof applies to P̃Dt and
ensures that r(P̃Dt ) > 0. As a result, we omit here the case of P̃Dt to avoid repetition.

Following Proposition 3.3, it is sufficient to prove that there exists a constant β > 0 such that

for all n ≥ 1,
∣∣∣∣∣∣(PDt )n

∣∣∣∣∣∣1/n
Cb(D)

≥ β. Let C ⊂ D be a compact set with positive Lebesgue measure,

i.e. |C| > 0. It follows from Theorem 2.6 that PDt admits a smooth transition density pDt , which is
positive on C ×C. Therefore, there exists α > 0 such that for all x, y ∈ C, pDt (x, y) ≥ α. Besides, for
n ≥ 1, ∣∣∣

∣∣∣
∣∣∣
(
PDt
)n∣∣∣
∣∣∣
∣∣∣
Cb(D)

≥
∥∥∥
(
PDt
)n

1D

∥∥∥
∞
.

Moreover, for all x ∈ C,

∥∥∥
(
PDt
)n

1D

∥∥∥
∞

≥
(
PDt
)n

1D(x)

=

∫

Dn

pDt (x, y1) . . . p
D
t (yn−1, yn)dy1 . . . dyn

≥
∫

Cn

pDt (x, y1) . . . p
D
t (yn−1, yn)dy1 . . . dyn

≥ (α|C|)n.

Consequently, for all n ≥ 1, ∣∣∣
∣∣∣
∣∣∣
(
PDt
)n∣∣∣
∣∣∣
∣∣∣
1/n

Cb(D)
≥ α|C| > 0,

which concludes the proof.

We now apply Theorem 3.4 to the operators PDt and P̃Dt on the cone K to obtain that r(PDt ) and
r(P̃Dt ) are eigenvalues of their respective operators. In addition, these eigenvalues are shown to be
simple. The following proof is inspired from unpublished lecture notes by P. Collet.

Proposition 3.6 (Consequence of the Krein-Rutman theorem). Let Assumptions (F1) and (O1)
hold. For all t > 0, r(PDt ) (resp. r(P̃Dt )) is a simple eigenvalue of the operator PDt (resp. P̃Dt ) with
eigenspace generated by an element φt (resp. ψt) of K ∩L1(D) such that φt > 0 (resp. ψt > 0) on D.
Furthermore, r(P̃Dt ) = r(PDt )e−dγt.

Proof. Let t > 0. The compactness of PDt and P̃Dt on Cb(D) follows from Theorem 2.8 and Re-
mark 2.10. Besides, the cone K defined in (28) evidently satisfies the assumptions of Theorem 3.4.
Therefore, by Theorem 3.4 and Proposition 3.5 we obtain the existence of φt, ψt ∈ K \ {0} such that

PDt φt = r(PDt )φt, P̃Dt ψt = r(P̃Dt )ψt. (29)

Step 1. Let us prove that
r(P̃Dt ) = r(PDt )e−dγt (30)

by computing the integral
∫
D
ψt(x)P

D
t φt(x)dx in two different ways. On the one hand, by (29),

∫

D

ψt(x)P
D
t φt(x)dx = r(PDt )

∫

D

ψt(x)φt(x)dx. (31)
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On the other hand, using Fubini-Tonelli’s theorem, Theorem 2.7 and (29) again,

∫

D

ψt(x)P
D
t φt(x)dx = edγt

∫

D

φt(x)P̃
D
t ψt(x)dx

= edγtr(P̃Dt )

∫

D

φt(x)ψt(x)dx. (32)

Let us now prove that
∫
D
φt(x)ψt(x)dx ∈ (0,∞). First, for x ∈ D, r(PDt )φt(x) = PDt φt(x) =∫

D pDt (x, y)φt(y)dy > 0 since φt ∈ K \ {0} and pDt > 0 on D ×D by Theorem 2.6. Therefore, φt > 0
on D. Likewise ψt > 0 on D so that

∫
D φt(x)ψt(x)dx > 0. Second, using the boundedness of φt

along with the double integral estimate from Lemma 3.1 in the left equality in (29), one obtains that
φt ∈ L1(D). Using Theorem 2.7 one also has that ψt ∈ L1(D). In particular, since φt and ψt are in
L∞(D), this yields that

∫
D
φt(x)ψt(x)dx <∞. As a result, the equalities (31) and (32) yield (30).

Step 2. Let us prove that every real-valued eigenvector of PDt associated with the eigenvalue r(PDt )
has a constant sign. Assume that there exists ht ∈ Cb(D) such that PDt ht = r(PDt )ht and ht changes
sign on D. Then, by the positivity of pDt one has for x ∈ D,

r(PDt )|ht(x)| = |PDt ht(x)|

=
∣∣∣
∫

D

pDt (x, y)ht(y)dy
∣∣∣

<

∫

D

pDt (x, y)|ht(y)|dy = PDt |ht|(x).

As a result, since ψt > 0 on D, by Theorem 2.7 one has that

r(PDt )

∫

D

ψt(x)|ht(x)|dx <
∫

D

ψt(x)P
D
t |ht|(x)dx

= edγt
∫

D

P̃Dt ψt(x)|ht(x)|dx

= r(PDt )

∫

D

ψt(x)|ht(x)|dx,

by (30), which leads to a contradiction. Therefore, ht has a constant sign on D.

Step 3. Let ht be a real-valued eigenvector of PDt associated with the eigenvalue r(PDt ), let us prove
that ht ∈ Span(φt). Up to changing ht to −ht, we can assume that ht ∈ K by Step 2. Let us define
for x ∈ D,

h̃t(x) :=
ht(x)∫

D
ψt(y)ht(y)dy

, φ̃t(x) :=
φt(x)∫

D
ψt(y)φt(y)dy

,

so that ∫

D

h̃t(x)ψt(x)dx =

∫

D

φ̃t(x)ψt(x)dx = 1. (33)

Notice that, φ̃t − h̃t is an eigenvector of PDt with eigenvalue r(PDt ), therefore it has a constant sign.
By (33), one concludes that necessarily φ̃t − h̃t = 0 on D since ψt > 0 on D. Hence ht ∈ Span(φt)
and r(PDt ) is a simple eigenvalue.

Step 4. Applying this time Step 2 and Step 3 to the operator P̃Dt , one also obtains that r(P̃Dt ) is
also a simple eigenvalue. This concludes the proof of Proposition 3.6.

To prove Theorem 2.12, we finally need the following technical lemma.

Lemma 3.7 (High velocity exit event). Under Assumptions (F1) and (O1),

∀t > 0, sup
q∈O

P(q,p)(τ∂ > t) −→
|p|→∞

0.

Proof. Let t > 0 and α ∈ (0, 1). The Gaussian upper-bound (21) ensures the existence of Ct,t > 0

such that for all x, y ∈ D, pDt (x, y) ≤ Ct,tp̂
(α)
t (x, y), where p̂

(α)
t (x, y) is the transition density of the

process (q̂
(α)
t , p̂

(α)
t )t≥0 defined in (10).
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Furthermore, for x = (q, p) ∈ D, the law of q̂
(α)
t is Gaussian with mean q+ tpΦ1(γt) and covariance

matrix σ2t3

3α Φ2(γt)Id, where Φ1 are Φ2 are defined in (22) and (23). Therefore,

∫

Rd

p̂
(α)
t ((q, p), (q′, p′))dp′ =

(3α)d/2

(2πσ2t3Φ2(γt))
d/2

e
− 3αt2Φ1(γt)2

2σ2t3Φ2(γt)

∣

∣

∣
p− q′−q

tΦ1(γt)

∣

∣

∣

2

.

Let δ := supq,q′∈O |q − q′| (which is finite since O is bounded), then for t > 0 and q, q′ ∈ O, if

|p| ≥ 2δ
tΦ1(γt)

(Φ1 is positive),

∫

Rd

p̂
(α)
t ((q, p), (q′, p′))dp′ ≤ (3α)d/2

(2πσ2t3Φ2(γt))
d/2

e
− 3αt2Φ1(γt)2

8σ2t3Φ2(γt)
|p|2

.

As a consequence,

sup
q∈O

P(q,p)(τ∂ > t) = sup
q∈O

∫

O

∫

Rd

pDt ((q, p), (q
′, p′))dp′dq′

≤ sup
q∈O

Ct,t

∫

O

∫

Rd

p̂
(α)
t ((q, p), (q′, p′))dp′dq′

≤ Ct,t
(3α)d/2|O|

(2πσ2t3Φ2(γt))
d/2

e
− 3αt2Φ1(γt)2

8σ2t3Φ2(γt)
|p|2 −→

|p|→∞
0,

which concludes the proof.

We are now in position to prove Theorem 2.12.

Proof of Theorem 2.12. For t > 0, let φt (resp. ψt) be an eigenvector of PDt (resp. P̃Dt ) in K \ {0}
associated with the eigenvalue r(PDt ) (resp. r(P̃Dt )) and such that φt > 0 (resp. ψt > 0) on D, whose
existence is ensured by Proposition 3.6. We will prove Theorem 2.12 for φt and PDt , but the exact
same reasoning with the operator P̃Dt instead yields the proof for ψt and P̃Dt .

Step 1. Let us start by proving that Span(φt, t > 0) is a one-dimensional space generated by a
function φ ∈ K. This is the case if one can prove that for all s, t > 0, φs ∈ Span(φt).

For s, t > 0, PDs φs = r(PDs )φs. Furthermore, by the semigroup property satisfied by (PDr )r≥0,

PDs P
D
t φs = PDt P

D
s φs = r(PDs )PDt φs.

Since r(PDs ) is a simple eigenvalue of PDs by Proposition 3.6 then PDt φs ∈ Span(φs), i.e. there exists
αt,s > 0 such that PDt φs = αt,sφs.

Let us prove that αt,s = r(PDt ). Consider the integral
∫
D P

D
t φs(x)ψt(x)dx. One has that

∫

D

PDt φs(x)ψt(x)dx = αt,s

∫

D

φs(x)ψt(x)dx.

Furthermore, Theorem 2.7 and Proposition 3.6 also ensure that
∫

D

PDt φs(x)ψt(x)dx = edγt
∫

D

φs(x)P̃
D
t ψt(x)dx = r(PDt )

∫

D

φs(x)ψt(x)dx.

Since φs, ψt are positive on D and belong to Cb(D)∩L1(D) then
∫
D φs(x)ψt(x)dx ∈ (0,∞). Therefore,

the equalities above ensure that αt,s = r(PDt ). In particular, this yields that φs ∈ Span(φt) since r(PDt )
is a simple eigenvalue for PDt . Let us now denote by φ ∈ K a function generating Span(φt, t > 0).

Step 2. Let us now show that there exists λ0 ≥ 0 such that for all t > 0, r(PDt ) = e−λ0t. For s, t > 0,
PDt+sφ = r(PDt+s)φ. Besides,

PDt+sφ = PDt P
D
s φ

= r(PDt )r(PDs )φ.

Therefore, r(PDt+s) = r(PDt )r(PDs ) since φ > 0. Since
∣∣∣∣∣∣PDs

∣∣∣∣∣∣
Cb(D)

≤ 1 for all s > 0, then r(PDs ) ≤ 1.

As a result, for all s, t > 0, r(PDt+s) ≤ r(PDt ). Consequently, the function v : t > 0 7→ log(r(PDt )) is a
decreasing function which satisfies the Cauchy equation:

∀s, t > 0, vt+s = vt + vs.
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Classical results for Cauchy equations ensure that vt is linear. This implies that there exists λ0 ≥ 0
such that for all t > 0, r(PDt ) = e−λ0t.

Step 3. Let us prove that λ0 > 0. Assume that λ0 = 0, then for all (q, p) ∈ D, t > 0,

PDt φ(q, p) = E(q,p) [1τ∂>tφ(Xt)] = φ(q, p).

Hence, supq∈O φ(q, p) ≤ ‖φ‖∞ supq∈O P(q,p)(τ∂ > t) −→
|p|→∞

0 by Lemma 3.7. As a consequence,

φ ∈ Cb(D) attains its maximum ‖φ‖∞ at some x0 ∈ D. Then, ‖φ‖∞ = φ(x0) ≤ ‖φ‖∞Px0(τ∂ > t).
Hence, Px0(τ∂ > t) = 1, which leads to a contradiction since Px0(Xt ∈ R2d \D) > 0.

Step 4. Let us finally prove the properties on φ stated in Theorem 2.12. First, φ ∈ Cb(D) ∩ L1(D)
by Proposition 3.6. In addition, φ > 0 on D ∪ Γ− and φ = 0 on Γ+ ∪ Γ0 using Theorem 2.6 and the
fact that PDt φ = e−λ0tφ. Last, letting u(t, x) = PDt φ(x) in Theorem 2.6, we get that u ∈ C∞(R∗

+×D)
and ∂tu = Lu, but since u(t, x) also writes e−λ0tφ(x), we conclude that φ ∈ C∞(D) and Lφ = −λ0φ
on D.

3.3 Proof of Theorem 2.13 and Theorem 2.16

Let us now prove the existence of a unique QSD on the domain D for the processes (Xt)t≥0 in (6)

and (X̃t)t≥0 in (11).

Proof of Theorem 2.13. We prove this theorem for the process (Xt)t≥0 and notice that the exact same

proof with the process (X̃t)t≥0 instead of (Xt)t≥0 yields the result for (X̃t)t≥0 with the function φ
instead of ψ.

Step 1. Let us prove that the measure µ defined in (15) is a QSD on D of the Langevin process
(Xt)t≥0.

Let t > 0, A ∈ B(D). Integrating the equality P̃Dt ψ = e−(λ0+dγ)tψ over A, one obtains that

∫

A

P̃Dt ψ(x)dx = e−(λ0+dγ)t

∫

A

ψ(x)dx. (34)

Furthermore, using Fubini-Tonelli’s theorem along with Theorem 2.7, one has that

∫

A

P̃Dt ψ(x)dx = e−dγt
∫

D

ψ(x)Px(Xt ∈ A, τ∂ > t)dx.

Therefore, reinjecting into (34) we obtain since µ(dx) = ψ(x)dx that

Pµ(Xt ∈ A, τ∂ > t) = e−λ0tµ(A),

which gives in particular for A = D that Pµ(τ∂ > t) = e−λ0t and thus µ is a QSD on D for the process
(Xt)t≥0 by Definition 2.1.

Step 2. Let µ̌ be a QSD on D for the process (Xt)t≥0. Let us prove that µ̌ = µ, where µ is defined
in (15). We start by proving that µ̌ admits a density with respect to the Lebesgue measure on D and
that its density is an eigenvector of the semigroup (P̃Dt )t>0. By Definition 2.1, for all A ∈ B(D) and
t > 0,

Pµ̌(Xt ∈ A, τ∂ > t) = Pµ̌(τ∂ > t)µ̌(A). (35)

Moreover, by Proposition 2.2 and the positivity of the transition density pDt on D × D stated in

Theorem 2.6, there exists λ̌0 ∈ [0,∞) such that Pµ̌(τ∂ > t) = e−λ̌0t.
Let A ∈ B(D) with zero Lebesgue measure, then for all x ∈ D, Px(Xt ∈ A, τ∂ > t) = 0 by

Theorem 2.6. As a result, Pµ̌(Xt ∈ A, τ∂ > t) = 0 and µ̌(A) = 0 by (35). Therefore, by Radon-
Nikodym’s theorem, µ̌ admits a measurable non-negative density ψ̌ with respect to the Lebesgue
measure on D. Therefore, by (35), for all t > 0, A ∈ B(D),

∫

D

ψ̌(x)Px(Xt ∈ A, τ∂ > t)dx = e−λ̌0t

∫

A

ψ̌(y)dy. (36)
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By Fubini-Tonelli’s theorem,
∫

D

ψ̌(x)Px(Xt ∈ A, τ∂ > t)dx =

∫

D

∫

D

ψ̌(x)pDt (x, y)1A(y)dydx

=

∫

D

1A(y)

(∫

D

ψ̌(x)pDt (x, y)dx

)
dy.

As a result, it follows from (36) that for almost every y ∈ D,
∫

D

ψ̌(x)pDt (x, y)dx = ψ̌(y)e−λ̌0t.

Then, Theorem 2.7 ensures that
∫

D

ψ̌(x)p̃Dt (y, x)dx = ψ̌(y)e−(λ̌0+dγ)t,

which can be rewritten as: for almost every y ∈ D,

P̃Dt ψ̌(y) = ψ̌(y)e−(λ̌0+dγ)t. (37)

Since ψ̌ ∈ L1(D) and P̃Dt : L1(D) → Cb(D) by Remark 2.10, then ψ̌ can be chosen in Cb(D) by (37)
and in particular (37) holds for all y ∈ D.

Step 3. Let us prove that λ̌0 = λ0. In order to do that let us compute the integral
∫
D P̃

D
t ψ̌(x)φ(x)dx

in two different ways. On the one hand, it follows from (37) that
∫

D

P̃Dt ψ̌(x)φ(x)dx = e−(λ̌0+dγ)t

∫

D

ψ̌(x)φ(x)dx.

On the other hand, using Fubini-Tonelli’s theorem, Theorem 2.7 and Theorem 2.12,
∫

D

P̃Dt ψ̌(x)φ(x)dx = e−dγt
∫

D

ψ̌(x)PDt φ(x)dx

= e−(λ0+dγ)t

∫

D

ψ̌(x)φ(x)dx.

Since φ > 0, ψ̌ ≥ 0 on D and ψ̌ satisfies
∫
D ψ̌(x)dx = 1, then

∫
D ψ̌(x)φ(x)dx > 0 and λ̌0 = λ0.

Step 4. For t > 0, r(P̃Dt ) = e−(λ0+dγ)t is a simple eigenvalue of P̃Dt (seen as an operator on Cb(D))
with eigenvector ψ by Theorem 2.12. As a result, since

∫
D ψ̌(x)dx =

∫
D ψ(x)dx = 1, then ψ̌ = ψ and

thus µ̌ = µ.

Let us now prove Theorem 2.14.

Proof of Theorem 2.14. We shall only prove the first equality, the reasoning is exactly similar for the
second equality regarding the QSD of the adjoint process (X̃t)t≥0. It is also sufficient to prove the result
for f ∈ Cb(∂D), the extension to f ∈ L∞(∂D) being straightforward using a dominated convergence
argument. Besides, Tietze extension’s theorem guarantees that f ∈ Cb(∂D) can be extended to a
continuous bounded function on R2d. Such a function can then be approached by a smooth and
compactly supported function on R

2d. Therefore, it is enough to look at the case f ∈ C∞
c (D) and

conclude with a dominated convergence argument.
Let Φ be a non-negative C2 function in R+ such that Φ(0) = 1,Φ(ρ) = 0 for ρ ≥ 1 and for all

ρ ≥ 0, Φ(ρ) ∈ [0, 1].
Since O is C2 there exists δ > 0 small enough such that the Euclidean distance to the boundary

∂O, dist(·, ∂O), is C2 on the set Oδ := {q ∈ O : dist(·, ∂O) ≤ δ}. Let d∂ be defined as the distance
function dist(·, ∂O) on Oδ and extended to a C2 function on O.

For k ≥ 1, we define the function

gk : (q, p) ∈ D 7→ f(q, p)Φ(kd∂(q)) ∈ C2
c (D). (38)

For t > 0, let us compute the limit when k → ∞ of the following integral in two different ways,
∫

D

ψ(q, p)E(q,p) [gk(qτ∂∧t, pτ∂∧t)] dqdp.

16



Step 1: For (q, p) ∈ D,

E(q,p) [gk(qτ∂∧t, pτ∂∧t)] = E(q,p) [f(qτ∂ , pτ∂ )1τ∂≤t] + E(q,p) [gk(qt, pt)1τ∂>t] .

Notice that the sequence (gk)k≥1 is uniformly bounded by ‖f‖∞ and that gk(q, p) converges to 0
everywhere in D. Therefore, by the dominated convergence theorem, since ψ is in L1(D),

∫

D

ψ(q, p)E(q,p) [gk(qt, pt)1τ∂>t] −→
k→∞

0.

As a result,
∫

D

ψ(q, p)E(q,p) [gk(qτ∂∧t, pτ∂∧t)] dqdp −→
k→∞

∫

D

ψ(q, p)E(q,p) [f(qτ∂ , pτ∂ )1τ∂≤t] dqdp. (39)

Step 2: Second, by the Itô formula, we have that

E(q,p) [gk(qτ∂∧t, pτ∂∧t)] = gk(q, p) + E(q,p)

[∫ t

0

Lgk(qs, ps)1τ∂>sds
]
. (40)

By definition of gk (38) and L (7), for all (q, p) ∈ O × Rd,

Lgk(q, p) = kp · ∇qd∂(q)Φ
′(kd∂(q))f(q, p) + Φ(kd∂(q))Lf(q, p). (41)

Besides, by definition of Φ,
Φ(kd∂(q)) ≤ 1[0,1/k](d∂(q)).

As a result, integrating in the first term in the right-hand side of (40) against ψ ,
∣∣∣∣
∫

D

ψ(q, p)gk(q, p)dqdp

∣∣∣∣ ≤ ‖f‖∞
∫

D

ψ(q, p)1[0,1/k](d∂(q))dqdp. (42)

Furthermore, considering the second term in the right-hand side of the equality (41) one has since
f ∈ C∞

c (D),
∣∣∣∣
∫

D

ψ(q, p)E(q,p)

[∫ t

0

Φ(kd∂(qs))Lf(qs, ps)1τ∂>sds
]
dqdp

∣∣∣∣

≤ ‖Lf‖∞
∫

D

ψ(q, p)E(q,p)

[∫ t

0

1[0,1/k](d∂(qs))1τ∂>sds

]
dqdp

= ‖Lf‖∞
∫ t

0

∫

D

ψ(q, p)E(q,p)

[
1[0,1/k](d∂(qs))1τ∂>s

]
dqdpds

= ‖Lf‖∞
1− e−λ0t

λ0

∫

D

ψ(q, p)1[0,1/k](d∂(q))dqdp (43)

since ψ is the QSD on D of (qt, pt)t≥0. It remains to estimate the integral against ψ of the first term
in the right-hand side of the equality (41)

∫

D

ψ(q, p)E(q,p)

[∫ t

0

kp · ∇qd∂(qs)Φ
′(kd∂(qs))f(qs, ps)1τ∂>sds

]
dqdp

=
1− e−λ0t

λ0

∫

D

ψ(q, p)kp · ∇qd∂(q)Φ
′(kd∂(q))f(q, p)dqdp. (44)

Let us study the limit when k goes to infinity of
∫

D

ψ(q, p)kp · ∇qd∂(q)Φ
′(kd∂(q))f(q, p)dqdp.

Recall that Φ′ has support in [0, 1]. Besides, d∂ is C2 on O and coincides with the Euclidean
distance to the boundary on Oδ. Therefore, for k ≥ 1/δ, one can apply the following change of
variable involving the Weingarten map Wq and detailed for example in [6, Lemma 14.16],
∫

D

ψ(q, p)kp · ∇qd∂(q)Φ
′(kd∂(q))f(q, p)dqdp

=

∫

∂D

∫ 1/k

0

ψ(q − λn(q), p)kp · ∇qd∂(q − λn(q))Φ′(kd∂(q − λn(q)))f(q − λn(q), p) det(I + λWq)dλσ∂O(dq)dp.

(45)
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Moreover, by the change of variable s→ λk,

∫ 1/k

0

ψ(q − λn(q), p)kp · ∇qd∂(q − λn(q))Φ′(kd∂(q − λn(q)))f(q − λn(q), p) det(I + λWq)dλ

=

∫ 1

0

ψ(q − sn(q)/k, p)p · ∇qd∂(q − sn(q)/k)Φ′(kd∂(q − sn(q)/k))f(q − sn(q)/k, p) det(I + sWq/k)ds

(46)

All the terms inside the integral are bounded. Therefore, using the dominated convergence theorem
one easily shows that

∫ 1

0

ψ(q − sn(q)/k, p)p · ∇qd∂(q − sn(q)/k)Φ′(kd∂(q − sn(q)/k))f(q − sn(q)/k, p) det(I + sWq/k)ds

= ψ(q, p)f(q, p)p · ∇qd∂(q)

∫ 1

0

Φ′(kd∂(q − sn(q)/k))ds+ o(k)
k→∞

. (47)

Besides, for q ∈ ∂O, ∇qd∂(q) = −n(q). In addition, for s ∈ (0, 1),

kd∂(q − sn(q)/k) −→
k→∞

∇qd∂(q) · (−sn(q)) = s.

As a result, ∫ 1

0

Φ′(kd∂(q − sn(q)/k))ds −→
k→∞

∫ 1

0

Φ′(s)ds = Φ(1)− Φ(0) = −1.

Then, one concludes from (45),(46),(47) that

∫

D

ψ(q, p)kp · ∇qd∂(q)Φ
′(kd∂(q))f(q, p)dqdp −→

k→∞

∫

∂D

ψ(q, p)f(q, p)p · n(q)σ∂O(dq)dp. (48)

Consequently, it follows from (40),(41),(42),(43),(44) and (48) that

∫

D

ψ(q, p)E(q,p) [gk(qτ∂∧t, pτ∂∧t)] dqdp −→
k→∞

1− e−λ0t

λ0

∫

∂D

ψ(q, p)f(q, p)p · n(q)σ∂O(dq)dp. (49)

Finally, it follows from (39) and (49) that

∫

D

ψ(q, p)E(q,p) [f(qτ∂ , pτ∂ )1τ∂≤t] dqdp =
1− e−λ0t

λ0

∫

∂D

ψ(q, p)f(q, p)p · n(q)σ∂O(dq)dp

which concludes the proof since ψ = 0 on Γ− and positive on Γ+ by Theorem 2.12.

Let us conclude this subsection by proving Theorem 2.16. This will provide a spectral interpretation
of the QSD on D of the Langevin process, similarly to the spectral interpretation obtained in the
overdamped Langevin case, cf. Theorem 2.3.

Proof of Theorem 2.16. The couple (λ0, φ), defined in Theorem 2.12, is clearly a solution to the left
eigenvalue problem in (17). Let us prove that such a couple (λ0, φ) is unique, up to a multiplicative
constant for φ. Since the reasoning for the right eigenvalue problem with solution (λ0, ψ) is the same,
with the process (X̃t)t≥0 instead of (Xt)t≥0, it will not be detailed.

Let λ ∈ R and η ∈ C2(D) ∩ Cb(D ∪ Γ+) be a non-zero and non-negative classical solution of the
left eigenvalue problem in (17). Let

τV c
k
:= inf{t > 0 : Xt /∈ Vk},

where Vk := {(q, p) ∈ D : |p| < k, d∂(q) >
1
k} and we recall that d∂ refers to the distance to ∂O.

Applying Itô’s formula to the process (eλsη(Xs))s≥0 at the stopping time t∧ τV c
k
, one gets, for x ∈ D,

Px-almost surely, for all t ≥ 0,

e
λ(t∧τV c

k
)
η
(
Xt∧τV c

k

)
= η(x) + σ

∫ t

0

1s≤τV c
k
eλs∇pη(Xs) · dBs, (50)
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since Lη + λη = 0 on D. Moreover, ∇pη is bounded on the compact Vk since η ∈ C2(D). Therefore,
the stochastic integral in the right-hand side of the equality (50) is a martingale and its expectation
vanishes. Hence,

Ex

[
e
λ(t∧τV c

k
)
η
(
Xt∧τV c

k

)]
= η(x),

which can be rewritten as

η(x) = eλtEx

[
η
(
Xt

)
1τV c

k
>t

]
+ Ex

[
e
λτV c

k η
(
XτV c

k

)
1τV c

k
≤t

]
. (51)

Now we would like to let k → ∞. Let us prove the following limit, Px-almost surely,

lim
k→∞

τV c
k
= τ∂ ,

using the same reasoning as in [15, Section 3.1].
The sequence (τV c

k
)k≥1 is an increasing sequence of random variables, therefore it converges almost

surely to supk≥1 τV c
k
. Besides, using the continuity of the trajectories of (Xt)t≥0, one gets for all r > 0,

{
sup
k≥1

τV c
k
> r

}
=
{
∃k ≥ 1 : τV c

k
> r
}

=

{
∃k ≥ 1 : sup

u∈[0,r]

|pu| < k, inf
u∈[0,r]

d∂(qu) >
1

k

}

=

{
sup
u∈[0,r]

|pu| <∞, inf
u∈[0,r]

d∂(qu) > 0

}

=

{
sup
u∈[0,r]

|pu| <∞, τ∂ > r

}
.

For all r > 0, we have that supu∈[0,r] |pu| < ∞, almost surely. Therefore, supk≥1 τV c
k
> r if and

only if τ∂ > r, that is to say supk≥1 τV c
k
= τ∂ almost surely. As a result, one gets limk→∞ τV c

k
= τ∂

almost surely. Besides, since (τV c
k
)k≥1 is an increasing sequence, then for all s > 0, almost surely,

1τV c
k
>s −→

k→∞
1τ∂>s.

As a result, by continuity of the trajectories of (Xt)t≥0, Px-almost surely,

1τV c
k
≤tη(XτV c

k
) −→
k→∞

1τ∂≤tη(Xτ∂ ).

Moreover η(Xτ∂ ) = 0 almost surely on the event {τ∂ ≤ t} since Xτ∂ ∈ Γ+ Px-almost surely by [15,
Assertion (ii) of Proposition 2.8]. Therefore, taking the limit k → ∞ in (51), one gets by the dominated
convergence theorem that

∀t > 0, ∀x ∈ D, Ex

[
η
(
Xt

)
1τ∂>t

]
= e−λtη(x), (52)

which ensures in particular that necessarily λ ≥ 0. This also writes

∀t > 0, ∀x ∈ D,

∫

D

pDt (x, y)η(y)dy = e−λtη(x).

Using the boundedness of η along with (ii) in Theorem 2.8, we deduce that η ∈ L1(D). Now let
η̃ = η/

∫
D
η, then using Theorem 2.7 one obtains that

∀t > 0, ∀x ∈ D,

∫

D

η̃(y)p̃Dt (y, x)dy = e−(λ+dγ)tη̃(x).

Integrating over D we obtain that Pν̃(τ∂ > t) = e−(λ+dγ)t with ν̃(dx) = η̃(x)dx. Then, integrating
over any A ∈ B(D), we obtain that ν̃ is a QSD on D of the process (X̃t)t≥0. Consequently, the
uniqueness of such a QSD, by Theorem 2.13, ensures that ν̃ = µ̃ where µ̃ is defined in Theorem 2.13.
In addition, it implies that λ = λ0, which concludes the proof.
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3.4 Proof of Theorems 2.18 and 2.21

This section is devoted to the study of the long-time convergence of the semigroup (PDt )t>0. Note
that a similar study could be performed for the semigroup (P̃Dt )t>0, using the duality between the
two semigroups as stated in Theorem 2.7.

We start this subsection by ensuring the existence of a spectral gap for the operator PDt . In the
next statement, we denote by Cb(D,C) the space of complex-valued continuous bounded functions on
D.

Lemma 3.8 (Spectral gap). Under Assumptions (F1) and (O1), for all t > 0, the operator PDt admits
a unique complex eigenvalue with modulus equal to r(PDt ) = e−λ0t and eigenvector in Cb(D,C).
Proof. Assume that there exists an eigenvector ht ∈ Cb(D,C) of PDt with eigenvalue z ∈ C \ {e−λ0t}
such that |z| = e−λ0t. Let ψ ∈ Cb(D) be the eigenvector of P̃Dt from Theorem 2.12.

First, let us prove that
∫
D ht(x)ψ(x)dx = 0 by computing the integral

∫
D ht(x)P̃

D
t ψ(x)dx in two

different ways. On the one hand, by Theorem 2.12,
∫

D

ht(x)P̃
D
t ψ(x)dx = e−(λ0+dγ)t

∫

D

ht(x)ψ(x)dx.

On the other hand, by Theorem 2.7,
∫

D

ht(x)P̃
D
t ψ(x)dx = e−dγt

∫

D

PDt ht(x)ψ(x)dx

= ze−dγt
∫

D

ht(x)ψ(x)dx.

Therefore, since z 6= e−λ0t,
∫
D
ht(x)ψ(x)dx = 0, and in particular

∫

D

Re(ht(x))ψ(x)dx =

∫

D

Im(ht(x))ψ(x)dx = 0. (53)

Besides, one has for x ∈ D,

r(PDt )|ht(x)| = |PDt ht(x)|

=
∣∣∣
∫

D

pDt (x, y)ht(y)dy
∣∣∣

<

∫

D

pDt (x, y)|ht(y)|dy = PDt |ht|(x),

by the triangle inequality since the equality case requires that Re(ht) and Im(ht) have constant signs
on D, which would imply ht = 0 from (53) since ψ > 0 on D. As a result,

r(PDt )

∫

D

ψ(x)|ht(x)|dx <
∫

D

ψ(x)PDt |ht|(x)dx

= edγt
∫

D

P̃Dt ψ(x)|ht(x)|dx

= r(PDt )

∫

D

ψ(x)|ht(x)|dx

which leads to a contradiction, therefore such an eigenvalue does not exist.

We are now able to prove Theorem 2.18.

Proof of Theorem 2.18. Step 1: We shall first prove (19) for f ∈ Cb(D) then use a regularization
argument of the semigroup (PDt )t≥0 in the next step to conclude.

Let us define the following vector space of Cb(D),

Span(ψ)⊥ :=

{
f ∈ Cb(D) :

∫

D

f(x)ψ(x)dx = 0

}
.

On the one hand, it is clear that this is a closed subset of Cb(D), and thus a Banach space. On the
other hand, it follows from Theorems 2.7 and 2.12 that Span(ψ)⊥ is stable by PD1 . As a consequence,
we may consider in the sequel the operator PD1 |Span(ψ)⊥ .
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The compactness of PD1 ensures the compactness of PD1 |Span(ψ)⊥ as well. Therefore, any non-

zero element of the spectrum σ(PD1 |Span(ψ)⊥) is an eigenvalue of PD1 |Span(ψ)⊥ and the eigenvalues can

only accumulate at 0. Therefore, if the spectral radius r(PD1 |Span(ψ)⊥) > 0, then it is an eigenvalue

of PD1 |Span(ψ)⊥ by Definition 2.11. Moreover, Lemma 3.8 ensures that r(PD1 |Span(ψ)⊥) < r(PD1 )

since r(PD1 ) is a simple eigenvalue associated to a positive function φ which thus does not belong to
Span(ψ)⊥.

In any case, we thus have r(PD1 |Span(ψ)⊥) < r(PD1 ), so that there exists α∗ ∈ (0,+∞] such that

r(PD1 |Span(ψ)⊥) = e−λ0−α∗

. In addition, for α ∈ [0, α∗), by Proposition 3.3 there exists N0 ≥ 1 such
that for all N ≥ N0, ∣∣∣∣∣∣PDN |Span(ψ)⊥

∣∣∣∣∣∣
Cb(D)

≤ e−(λ0+α)N ,

where we have used the semigroup property to write (PD1 |Span(ψ)⊥)N = PDN |Span(ψ)⊥ .

Noticing that for all f ∈ Cb(D), f − φ⊗ψ
∫

D
φψ

(f) ∈ Span(ψ)⊥ since φ⊗ψ(f) = (
∫
D
ψf)φ, one gets for

N ≥ N0 and f ∈ Cb(D),

∥∥∥∥P
D
N f − e−λ0N

φ⊗ ψ∫
D
φψ

(f)

∥∥∥∥
∞

=

∥∥∥∥P
D
N

(
f − φ⊗ ψ∫

D
φψ

(f)

)∥∥∥∥
∞

≤ e−(λ0+α)N

∥∥∥∥f − φ⊗ ψ∫
D
φψ

(f)

∥∥∥∥
∞
.

Let t ≥ N0, then ⌊t⌋ ≥ N0, and we have that

∥∥∥∥P
D
t f − e−λ0t

φ⊗ ψ∫
D φψ

(f)

∥∥∥∥
∞

=

∥∥∥∥P
D
t−⌊t⌋P

D
⌊t⌋

(
f − φ⊗ ψ∫

D φψ
(f)

)∥∥∥∥
∞

≤
∥∥∥∥P

D
⌊t⌋

(
f − φ⊗ ψ∫

D φψ
(f)

)∥∥∥∥
∞

≤ e−(λ0+α)⌊t⌋
∥∥∥∥f − φ⊗ ψ∫

D φψ
(f)

∥∥∥∥
∞

≤ e−(λ0+α)teλ0+α

∥∥∥∥f − φ⊗ ψ∫
D φψ

(f)

∥∥∥∥
∞

≤ e−(λ0+α)teλ0+α

(
1 +

‖φ‖∞∫
D φψ

)
‖f‖∞ ,

which concludes the proof of (19) when f ∈ Cb(D), since the behavior of the left-hand side for t ≤ N0

can easily be bounded appropriately.
Step 2: Let us extend (19) for f ∈ L∞(D). It follows from Theorem 2.8 that for any s > 0 and any
f ∈ L∞(D), PDs f ∈ Cb(D). Therefore, by Step 1, for all α ∈ [0, α∗), there exists Cα > 0 such that
for all t > 0, ǫ ∈ (0, t) and f ∈ L∞(D),

∥∥∥∥P
D
t−ǫ(P

D
ǫ f)− e−λ0(t−ǫ)φ⊗ ψ(PDǫ f)∫

D
φψ

∥∥∥∥
∞

≤ Cα‖PDǫ f‖∞e−(λ0+α)(t−ǫ).

Furthermore, PDt−ǫ(P
D
ǫ f) = PDt f , ‖PDǫ f‖∞ ≤ ‖f‖L∞(D) and by the Fubini permutation along with

Theorem 2.7 since f, ψ ∈ L∞(D),

eλ0ǫφ⊗ ψ(PDǫ f) = eλ0ǫφ

∫

D

ψPDǫ f = e(λ0+dγ)ǫφ

∫

D

fP̃Dǫ ψ = φ⊗ ψ(f).

As a result, for all α ∈ [0, α∗), there exists Cα > 0 such that for all t > 0, ǫ ∈ (0, t) and f ∈ L∞(D),

∥∥∥∥P
D
t f − e−λ0t

φ⊗ ψ(f)∫
D
φψ

∥∥∥∥
∞

≤ Cα‖f‖L∞(D)e
−(λ0+α)(t−ǫ),

which yields the proof of Step 2.

We conclude this section with a proof of the long-time convergence, in total variation, of the
distribution of the Langevin process conditioned to remain in D, towards its QSD on D.
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Proof of Theorem 2.21. We first recall that for any probability measure θ on D and t ≥ 0,

‖Pθ (Xt ∈ ·|τ∂ > t)− µ‖TV = sup
f∈L∞(D),‖f‖L∞(D)≤1

∣∣∣∣Eθ [f(Xt)|τ∂ > t]−
∫

D

fdµ

∣∣∣∣ .

Let us fix α ∈ [0, α∗) and show that there exists C′
α such that for any initial distribution θ, t ≥ 0 and

f ∈ L∞(D), ∣∣∣∣
Eθ(f(Xt)1τ∂>t)

Pθ(τ∂ > t)
−
∫

D

fψ

∣∣∣∣ ≤
C′
α∫

D
φdθ

e−αt‖f‖L∞(D).

First, let us prove that

Pθ(τ∂ > t) ≥
∫
D
φdθ

‖φ‖∞
e−λ0t.

For x ∈ D, t > 0 one has

Px(τ∂ > t) =

∫

D

pDt (x, y)dy

=

∫

D

pDt (x, y)
φ(y)

φ(y)
dy

≥
∫
D pDt (x, y)φ(y)dy

‖φ‖∞
=
φ(x)e−λ0t

‖φ‖∞
,

by Theorem 2.12. Therefore,

Pθ(τ∂ > t) =

∫

D

θ(dx)Px(τ∂ > t) ≥
∫
D
φdθ

‖φ‖∞
e−λ0t. (54)

As a result, it follows from Theorem 2.18 and the inequality (54), the existence of Cα > 0 such that
for all t > 0,

∣∣∣∣
Eθ(f(Xt)1τ∂>t)

Pθ(τ∂ > t)
−
∫

D

fψ

∣∣∣∣ =
∣∣∣∣∣

∫
D

(
Ex(f(Xt)1τ∂>t)−

(∫
D fψ

)
Pθ(τ∂ > t)

)
θ(dx)

Pθ(τ∂ > t)

∣∣∣∣∣

≤
∫

D

∣∣∣Ex(f(Xt)1τ∂>t)− e−λ0t
∫

D
ψf

∫

D
φψ
φ(x)

∣∣∣
Pθ(τ∂ > t)

θ(dx)

+

∣∣∣∣
∫

D

ψf

∣∣∣∣

∣∣∣e−λ0t
∫

D
φdθ

∫

D
φψ

− Pθ(τ∂ > t)
∣∣∣

Pθ(τ∂ > t)

≤ Cα
Pθ(τ∂ > t)

e−(λ0+α)t‖f‖L∞(D) + ‖f‖L∞(D)
Cαe

−(λ0+α)t

Pθ(τ∂ > t)

≤ 2Cα∫
D φdθ

e−αt‖f‖L∞(D)‖φ‖∞.
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