Rates of convergence in the central limit theorem for martingales in the non stationary setting - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2022

Rates of convergence in the central limit theorem for martingales in the non stationary setting

Résumé

In this paper, we give rates of convergence, for minimal distances and for the uniform distance, between the law of partial sums of martingale differences and the limiting Gaussian distribution. More precisely, denoting by $P_{X}$ the law of a random variable $X$ and by $G_{a}$ the normal distribution ${\mathcal N} (0,a)$, we are interested by giving quantitative estimates for the convergence of $P_{S_n/\sqrt{V_n}}$ to $G_1$, where $S_n$ is the partial sum associated with either martingale differences sequences or more general dependent sequences, and $V_n= {\rm Var}(S_n)$. Applications to linear statistics, non stationary $\rho$-mixing sequences and sequential dynamical systems are given.
Fichier principal
Vignette du fichier
W1-nonstat-martingales-6novembre-2020.pdf (349.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03112369 , version 1 (16-01-2021)

Identifiants

Citer

Jérôme Dedecker, Florence Merlevède, Emmanuel Rio. Rates of convergence in the central limit theorem for martingales in the non stationary setting. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2022, 58 (2), ⟨10.1214/21-aihp1182⟩. ⟨hal-03112369⟩
135 Consultations
213 Téléchargements

Altmetric

Partager

More