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Rates of convergence in the central limit theorem for

martingales in the non stationary setting

Jérome Dedecker? Florence Merlevede Tand Emmanuel Rio *

November 21, 2020

Abstract

In this paper, we give rates of convergence, for minimal distances and for the uniform
distance, between the law of partial sums of martingale differences and the limiting Gaus-
sian distribution. More precisely, denoting by Px the law of a random variable X and
by G, the normal distribution N (0,a), we are interested by giving quantitative estimates
for the convergence of Pg /v o G1, where S, is the partial sum associated with either
martingale differences sequences or more general dependent sequences, and V,, = Var(S,,).
Applications to linear statistics, non stationary p-mixing sequences, and sequential dynam-

ical systems are given.

Keywords. Minimal distances, ideal distances, Gaussian approximation, Berry-Esseen

type inequalities, martingales, p-mixing sequences, sequential dynamical systems.
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1 Introduction and Notations

Let (&;)sen denote a sequence of martingale differences in L2, with respect to the increasing
filtration (F;)jen. Let My, = > p_; & and V, = > E(&2). If

~1/2 , ~1 2 _\P
vV, /“E (112%)%\&0 — 0 and V, ggk —"1 asn— oo, (1.1)
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then V;, /2 M, converges in distribution to a standard normal variable (see [10]). Other
sets of conditions implying the central limit theorem can be found in [15]. In particular,

under the first part of condition (1.1), its second part is implied by

n
V. L M), -F 1 asn — oo, where (M), := ZE(&%LFk_l).
k=1
We are interested in bounds on the speed of convergence in this central limit theorem
and in particular by giving upper bounds for the IL; and L, distances defined respectively

as
Apq = [|F, — @[ and Ap o = |Fp — Pfloo s (1.2)

where F), is the cdf of M,/ V'V, and ® is the cdf of a standard normal variable. Both
of these distances have their own interests. For instance, A, o provides useful estimates
of the quantile F; !(u) of M, /vV, when min(u,1 — u) is large enough, whereas the L!-
distance provides estimates of the super quantile (also called the conditional value at risk)
as stated in [23, Theorem 2].

Concerning the L-distance A, », for martingales, several results have been obtained
under different kinds of assumptions.

One of the first results is due to Heyde and Brown [16] and can be stated as follows.

For p €]2,4], there exists a positive constant C), such that for any n > 1,

)1/(p+1) (1.3)

oo < Cp (Vi (MY = 1P + VP2 S E(l61]7)
k=1

This result has been extended to any p € (2,00) by Haeusler [13]. See also Mourrat [19]
for an improvement of (1.3) in the bounded case. If the conditional variances are constant
meaning that E(¢2Fy—1) = E(£2) a.s. for any k, and if

sup E(]€:]P)
i>1 E(&]?)

< 00, (1.4)
the rates in the central limit theorem in terms of the L,.-distance are of order V,, (p=2)/(2p +2),
For p = 3 this gives the rate anl/
that there exist two positive constants a and 3 such that for any i > 1, a < E(]&|?) < 8,
Grams [12] proved that the rate is of order v, A (see Theorem 1 in Bolthausen [2]). Even

if this rate can appear to be poor compared with the iid case, it cannot be improved with-

® However in that case, under the additional assumption

out additional assumptions as shown in [2, Section 6, Example 1]. More generally, when
p € (2,3), under the same condition on the conditional variances and assuming (1.4), one

Vn_(p_z)/(Qp_Q) (see our Corollary 3.1). Again this rate cannot be im-

can reach the rate
proved without additional assumptions as shown by our Proposition 3.1. The paper [§] is in

this direction. For instance, still in the case where the conditional variances are constant,



Theorem 2 in [8] states that A, o < CVn_l/ 2 log n provided V,, < 4™ and there exists v > 0
such that E(|& |3 Fr—1) < YE(£7|Fr—1) a.s. for any k (see [9] for related results).

Let us now comment on the quantity ||V, (M), — 1|2 appearing in the right hand
side of (1.2) when it is not equal to zero. For stationary sequences (except in some degen-
erate cases), ||V, (M), — 1||,/2 is typically of order Vi /% which leads at best to the rate
Vi, P /4P+) 1t is therefore clear that, in these non-degenerate situations, the rate Vn_l/ 4
cannot be reached, whatever the value of p.

One of the goals of this paper is to give tractable conditions (not assuming that
E(&2|Fr-1) = E(&) as. or V, Y (M), = 1 as.) for p € (2,3] under which the rate
Vn_(p_Q)/(Zp_2) can be reached for A, - (up to a logarithmic term when p = 3). These
conditions will be expressed with the help of quantities involving a sum of conditional ex-
pectations and allow to use martingale approximations techniques, as introduced by Gordin
[11] (see also Volny [27]), to get rates when the sequence is not a martingale differences
sequence. Applications via martingale approximations are provided in Section 4. The
case of sequential dynamical systems as developed by Conze and Raugi [4] is considered in
Subsection 4.3.

To derive the rates concerning A, »,, we shall rather work with minimal distances
also called Wasserstein distances of order r (see Inequality (3.1) below for the connection
between A,, », and these distances). In particular, we shall also exhibit rates for the minimal
distance A, 1 (see the equality (1.8) below).

Let us recall the definitions of these minimal distances. Let L(u,v) be the set of
probability laws on R? with marginals ¢ and v. Let us consider the following minimal

distances: for any r > 0,

>1/max(1,r)

Wy (p,v) = inf {(/ | — y|" P(dz, dy) : P e L(u, 1/)} .

We consider also the following ideal distances of order r (Zolotarev distances of order r).

For two probability measures i and v, and r a positive real, let

Gy =sup{ [ gau~ [ fav:fen},

where A, is defined as follows: denoting by [ the natural integer such that [ <r <I+1, A,

is the class of real functions f which are [-times continuously differentiable and such that
[FO@) = fOW) < o —y"™" for any (x,y) ER xR, (15)

For r €]0, 1], applying the Kantorovich-Rubinstein theorem (see for instance [7, Theorem
11.8.2]) to the metric d(z,y) = | — y|", we infer that

Wr(p, v) = Gr(p,v) - (1.6)



For r > 1 and for probability laws on the real line, the following inequality holds

Wiy v) < e (G ()", (1.7)

where ¢, is a constant depending only on 7 (see [22, Theorem 3.1]). Note that for r = 1,
(1.6) ensures that

WPy 7.2 G1) =GPy G1) = Ay (1.8)

where Py, is the law of M, /V/V, and G1 the N(0,1) distribution.

The paper is organized as follows. In Section 2, we give rates in terms of Zolotarev
and then in terms of Wasserstein distances between the law of the martingale having a
moment of order p € (2,3] and the Gaussian distribution with the same variance. Upper
and lower bounds for the uniform distance A,, . are provided in Section 3. Applications
to linear statistics associated with stationary sequences, p-mixing sequences in the sense of
Kolmogorov and Rozanov [17] and sequential dynamical systems are presented in Section

4. All the proofs are postponed to Section 5.

In the rest of the paper, we shall use the following notations: we will denote by Px the
law of a r.v. X and by G, the N(0,a) distribution, and for two sequences (a,),>1 and
(bn)n>1 of positive reals, a,, < b, means there exists a positive constant C' not depending
on n such that a,, < Cb, for any n > 1. Moreover, given a filtration F,, we shall often use
the notation E(-) = E(:|Fy).

2 Rates for Zolotarev and Wasserstein distances

In this section (&;);en will denote a sequence of martingale differences in IL2, with respect to

the increasing filtration (F;);en and with E(¢2) = 0. We shall use the following notations:
n n
M, = Z;& , Vi = 2;012 , Op = 112%>%|0i] , vp(a) = a8 + aVy,,
1= 1=

where a is a positive real and a = (1 + a2) / a®. Moreover, for p > 2 and £ > 2, we denote
by

U 0) = bl v o2 S Eer (D)~ ) 2.1)
k={

Theorem 2.1. Let p €]2,3] and r € (0,p]. There exist positive constants C,.,, depending

on (r,p) and k, depending on r such that for every positive integer n and any a > 1,

G (Par, Gv,) < Crp (8 S - La(p, ,a6,) )

w?)—r w2—r

/wnw)/é% L g /an<a>/5ﬁ (i)

+ 424707, (2.2)



where
E inf (t5n§ka 18

Yn(t) = sup (2.3)
1<k<n O'k
and "
L,(p,r,ad,) = Z Uen(p) . (2.4)

~ (Vo — Vi1 + a262)(=7)/2

Remark 2.1. Let p €]2,3] and r € (0,p]. Using (1.6) or (1.7), the fact that
Gr(Pag,, v G1) = V, "2¢(Pa,. Gv,)

and inequality (2.2), we derive upper bounds for W;.(Py , ., G1) and then rates in the
central limit theorem. In particular for W,.(P,, IV G1) to converge to zero as n — oo it
1/2

is necessary that V,,
for the CLT to hold.

maxi<;<n |0;| = 0 as n — oo which is also a necessary condition

In particular, for r € (0,1], the following corollary holds.

Corollary 2.1. Let p €]2,3] and r € (0,1]. Under the assumptions and notations of

Theorem 2.1, there exists a positive constant Cy.,, depending on (r,p) such that

/v ”wM)

a

W (P, , Gy,) < 4V2(adn)" + Crp ( " da + L (p, aan)> :
In particular if the &’s are in LP with p €]2,3] and (r,p) # (1,3),

‘%@WGméh@mw+@W<m)UM@

1<k<n Uk

(v mW”m”+mmnmﬁ,
and if the &’s are in L3,

Wi (P, Gv,) < 4246, + Cs < sup ‘gk‘ g(v/vn(a)/6n) + Ln( 3,1,a(5n)> .

1§k<n k

Remark 2.2. Note that if (§;);>1 is a sequence of integer valued random variables then,
whatever its dependence structure, setting S, = Y ;_; & and proceeding as in the proof of
[22, Theorem 5.1] we derive that for any r > 0,
max(1,r)
tim inf (W, (Ps,, Gyars.) )

n—oo

>27"/(r+1)
provided Var(S,,) — oo as n — oco. Hence, in the case of martingale differences, if p € (2, 3),

SUP| <<y, 05 “E(|&k[P) < Oy and Ly (p,p — 2,6,) < Ca, we get

2=~ /(p—1) < liminf W2 (Pag,, Gv,,) < limsup Wy—2(Par,, Gy,) < K

n—oo

for some positive constant K. In addition, if p = 3, sup;<x<, alzzE(\ﬁkP) < C) and
L,(3,1,0,) < Cy, we have

W1(Pu,, Gy,) < log(v/va(1)/5y)



3 Berry-Esseen type results

Using [6, Remark 2.4] stating that, for any p €]2, 3] and any integrable real-valued random

variable Z,

sup IP(Z < 2) — ®(2)| < (14 (2m) /%) (Wy_a(Pz, G1))/#7 Y, (3.1)

combined with Remark 2.1, Corollary 2.1 leads also to Berry-Esseen type upper bounds.
More precisely, the following result holds

Corollary 3.1. Assume that (&)icz is a sequence of martingale differences in 1P with

p €]2,3]. Let Ay be defined by (1.2). Then, with the notations of Section 2, one has
/(p—1)
_ (=2 E D
Vi, 2"V | sup (|&;| ) + Lo(p,p —2,6,) if p € (2,3)
A < 1<k<n O

)

1/2
y-1/4 ( su |5k’ 0g(v/vn(1)/64) + La( 3,1,5@) ifp=3.

1<k<n Uk

In particular if

P
sup (|§l2€| ) <(C and E(fi‘]:k—l) = a,% a.s. (32)
1<k<n O}
it follows that
_2((1;121)) if 2
Apoo < { ¥ ifpe(23)

VY 0g 2 (\/un (1) /6,) if p=3.

It turns out that one can construct a non stationary sequence of martingale differences

satisfying (3.2) with o7 = 1 and such that there exists a positive constant ¢ > 0 for which

A, > cn_% for any p > 2 and any n > 20. This shows that for p € (2, 3) the rate given
in Corollary 3.1 is optimal and quasi optimal (up to y/logn) in case p = 3.
Proposition 3.1. Let p > 2 and n > 20. There exists (X1,...,X,) such that
E(Xklo(X1,..., Xp—1)) =0 and E(XP|o(X1,...,Xk1)) =1 a.s.,
2. supy<p<, B(|X3|P) <E(JYP) + 5P=2 where Y ~ N(0,1),
3. sup;cg |P(Sn < ty/n) — ®(t)| > 0.06 n~(P=2/Cr=2) "yhere S, = S 7_, Xy

Note that in case p = 3, Example 1 in [2] also shows that even for martingales with

conditional variances equal to one and moments of order 3 uniformly bounded, the rate

—1/4

n cannot be improved in general.

Proof of Proposition 3.1. Let n be an integer satisfying n > 20. Let a be a real in [1, y/n/4],
to be fixed later, and k = inf{j € N : j > 4a®}. Then k < 1+ (n/4), which ensures that

6



k <n. Set m =n —k. We now define the sequence (X;);e[1,n of martingale differences as

follows.

(i) The random variables (X;) jel1,m] are independent and identically distributed with com-

mon law the standard normal law.

(ii) Let Uyt1, - - -, Uy be a sequence of independent random variables with uniform distri-
bution over [0, 1], independent of (X1, Xs,...,X,,). Let S, = X1+ Xo+ -+ 4+ X If
|Sim| € [a,2a], set X; = ®~H(U;) for any j in [m + 1,n]. If |Sp| € [a, 2a], set

Xj = —(Sm/k)ly, <252, 4x2) + (k/Sm)ly; sk2 (52, +42)- (3.3)

From the definition of the random variables X, if |S,| € [a,2a] and U; < k?/(S2, +k?)
for any j in [m + 1,n], then S,, = 0. It follows that

2
V2mm

We now estimate the conditional moments of the random variables X; for j > m. From

P(S, = 0) > exp(—klog(1 + 4a*/k?)) /2a exp(—x2/2m)dz. (3.4)

the definition of these random variables, for any measurable function f such that f(X;) is
integrable

E(f(X;) | Fj-1) = E(f(X;) | Sm)- (3.5)

Now, if (S, = z) for some z such that |z| ¢ [a,2a], then X; = ®~1(U;) and consequently

E(X;|Sn=2)=0, E(X]|Sn=2)=1 and E(|X;[” | S =) =E(]Y|))  (3.6)

for any p > 0. Here Y is a random variable with law N(0,1). Next, if (S,, = x) for some
x such that |z| € [a, 2a], then, according to (3.3),

E(X; | Sn=2)=0, E(X]|Sn=2)=1 (3.7)

and, for any p > 2,
B |z|PE2=P + kP|x|?7P

E(XP | S = ) — (3.5)
In that case, since k € [4a?,5a?] and |S,| € [a, 2a],
E(|X;[P | Sm = z) < |2[PE™P 4+ kP~ 2|2*P <1+ (5a)P72 < 2(5a)P 2. (3.9)

From (3.6), the above upper bound and the fact that, since n > 20, m > (3n/4) — 1 >
(7n/10) and then

E(|X;[P) <E(Y[P) 4 2 (5a)P~2P(|Sm| € [a,2a]) < E([Y|P) +5P~22aP "2, (3.10)
Now, for p > 2, choosing a = (n/4)"(P=2) in the above inequality, we get that

E(IX;P) < E(Y]P) + 5772, (3.11)

7



Consequently, for this choice of a, the absolute moments of order p of the random variables
X are bounded by some positive constant depending only on p.

Now, using (3.4) we bound from below P(S,, = 0). First 4a® < k, which ensures that
exp(—klog(1 + 4a?/k?)) > 1/e, and second, for z in [a, 2a],

exp(—z?/2m) > exp(—2a®/m) > exp(—n/8m) > exp(—10/56)
since a®> < n/16 and m > 7n/10. Hence
P(S, = 0) > 0.24 an~'/? > 0.12 n~(P=2/(2r=2) | (3.12)

Therefrom, Item 3 of the proposition follows. [J

4 Applications

Proposition 5.1 of Section 5 (which is the main ingredient for proving Theorem 2.1), com-
bined with a suitable martingale approximation, can also be used to derive upper bounds
for the Wasserstein distances between the law of partial sums of non necessarily stationary
sequences and the corresponding limiting Gaussian distribution. This leads to new results
for linear statistics, p-mixing sequences and sequential dynamical systems. Note that for
these non stationary dynamical systems, a reversed martingale version of our Theorem 2.1

will be needed.

4.1 Linear statistics

Let p €]2,3] and (Y;);cz be a strictly stationary sequence of centered real-valued random
variables in LP. Let Gy = o(Y;,4 < k). Define v, = Cov(Yp, Yi) and

N = mae ([ YE(V4[G0) 2. sup. [E(YY}(60) ~ E(GY)) )
Jzrz

Let also

n n

Ap =3 iN and n, =Y [EYi|Go)llp- (4.1)

=1 1=0

Let (a;n)i>1 a triangular array of real numbers and define

n

My = max |oyy|, Xin = inYi, Sy = E Xin and V, = Var(S,).
1<t<n —
i—

We refer to S,, as a “linear statistic” based on the stationary sequence (Y;);cz. Such
linear statistics appear in many statistical contexts, for instance when considering least

square estimators in a regression model with stationary errors (see for instance [5]).

8



In the two corollaries below we shall assume that » ;|| < co which implies in
particular that (Y;);cz has a bounded spectral density fy (0) = 5= >,z €* on [, 7).
Moreover, in the first corollary, we assume in addition that the spectral density is bounded
away from 0 (we refer to [3] for conditions ensuring such a fact). To state these corollaries,

it is convenient to introduce the following quantity:

mP2nP~2(A, + n?) <Z oy n) G if pe(2,3)
B(n,p) := B (4.2)
Mt (A + n2) log ( . 2 ay n) if p=3.

Corollary 4.1. Let p € (2,3]. Assume that ) ;o k| < 0o and that infic(_r o [fy (t)] =
m > 0. Then

Wi(Ps,, Gv,) < mn Y |E(Yk|Go)ll2 + B(n,p).
k=0

Note that if
> IE(YilGo)ll2 < oo, (4.3)

i>1
then » ;g [7k| < oo (see for instance [18, p. 106]). If in addition to (4.3), we assume that
Sup,,>0(An +17n) < 00, then we get

mb 2(276042”)(3 n if p e (2,3)

=1
my, log (mT_L1 Z a?,n) if p=3.
=1

For additional results in the special case where (Y;);cz is a stationary sequence of martingale

Wi (Ps,,Gy,) < (4.4)

differences, we refer to [5].

Remark 4.1. If, for any positive k,

n—k
1i 2521 nOCltkn
im — =cp,

2
nooo Y O,

and Y ;~¢ k| < oo, then

V
n — 0 —70+2ch'yk, asn — 0o. (4.5)
Zf laﬁn k>1

Moreover if infyc_r [ fy ()] = m > 0, then 02 > 0. Let T, = Sn/y/> 01 O‘?,n' Under
(4.3) and if fy is bounded away from zero, sup,,>q(An +7,) < oo and (4.5) holds, it follows



that

mn

1/2 T=n 3
v, JEiial,
Wi(Pr,,Gy2) < :72 o+ Yo in
L« n
\/m M log <m;1 Z a?’n> fp—3.
\ \/m (=1

In case where oy, = kk® with a > —1/2, then m, (>}, a2 )~Y/2 is exactly of order

if p € (2,3)

n*(“+1/2)1_1/2<a<0 +n"121,50 and we can show (since > i>117i| < oo and o > 0), that

V2

\/2:2:1a2n

— ol =0(1/n).

Hence, for instance if o > 0,

n~(P=2)/2 if p € (2,3)

%] (PTn, GO.Q) <
{n1/2 log(n) if p=3.

Remark 4.2. Let (ay(k))r>o be the usual Rosenblatt strong mixing coefficients [25] of

the sequence (Y;);ecz. If we assume that
P(|Yy| > t) < Ct™*° for some s > p and Zk(ay(k))z/p_Q/s < 00,
E>1

then condition (4.3) holds and sup,,>q(As + 1,) < co. Hence in this case (4.4) holds and
Remark 4.1 applies.

If we do not require the spectral density bounded away from 0 but only that fy(0) > 0
then an additional term appears in the bound of the Wasserstein distance between Ps, and
Gy, .

n

Corollary 4.2. Let p € (2,3]. Assume that 3 ;4 k%|vk| < 0o and fy(0) > 0. Then

n+1

n 1/2
Wi(Ps,., Gv,) < mn S [E(VRIG) > + Bn,p) + (3 (sn — an10)?)
k=0 k=1

where B(n,p) is defined in (4.2).

4.2 p-mixing sequences

In this section we consider a sequence (X;);>1 of centered (E(X;) = 0 for all 7), real-valued

bounded random variables, which are p-mixing in the sense that

p(k) =sup sup p(o(Xi1<i < j),0(Xu, Xp)) =0, as k — 00,
§>1 v>u>j+k

10



where o(X¢,t € A) is the o-field generated by the r.v.’s X; with indices in A and we recall

that the maximal correlation coefficient p(U, V) between two o-algebras is defined by
pU, V) = sup{|corr(X,Y)| : X € L2(U),Y e L}(V)}.

In this section we shall also assume that the r.v.’s (X;);>1 satisfies the following set of

assumptions

&) 1) © =3 g1 kp(k) < oo.
H) = S E(X?)
> = =4 7 )

2) For any n > 1, C), 11%1?;1 E(S, — S, 1 )2 < 00
Remark 4.3. Note that in (H3) necessarily C,, > 1. In many cases of interest the sequence
(Cp)n is bounded: for example, when X; = f;(Y;) where Y; is a Markov chain satisfying
py (1) < 1, then according to [20, Proposition 13], C,, < (1 + py(1))(1 — py (1))~ L. Here
(py (k))k>0 is the sequence of p-mixing coefficients of the Markov chain (Y);.

Corollary 4.3. Let (X;);>1 be a sequence of centered bounded real-valued random variables
such that (H) is satisfied. Let V;, = Var(Sy,) and K,, = maxi<i<y || Xi|loo. Then for any
positive integer n,

Wi(Ps,,Gv..) < Kn(1+ Cylog(l+ CVi)).

Remark 4.4. If the sequences (Cy,), and (K,,), are bounded and V;, — oo, then Corollary
4.3 provides a rate in the central limit theorem for S, /v/V,,. More precisely,

Wi(Ps, ) 7> G1) = OV, 2 log(V)) and ||Fy — @f|os = O(V,, /*\/log(V2)) -

where F), is the c.d.f. of S,,/v/V, (the second inequality follows from (3.1)). Note that
the above upper bounds hold even if we do not require a linear growth of the variance V,,

as it is imposed for instance in [28, Theorem 3.1] and of course, in the stationary case, in
[29, 21, 26].

4.3 Sequential dynamical systems

The term sequential dynamical system, introduced by Berend and Bergelson [1], refers to a
non-stationary system defined by the composition of deterministic maps Ty 0Ty _10---0T}
acting on a space X.

More precisely, we consider here the setting described by Conze and Raugi [4] and
Haydn et al. [14]. Let (T%)x>1 be a sequence of maps from X to X, where X is either a
compact subset of R% or the d-dimensional torus T¢. Let also m be the Lebesgue measure
defined on the Borel o-algebra B of X, normalized in such a way that m(X) = 1. We
assume that each T}, is non singular with respect to m i.e. m(A4) > 0= m(7T'(4)) > 0.

11



Let P, be the Perron-Frobenius operator, that is the adjoint of the composition by T:
for any f € Li(m),g € Los(m),

/ £(x) g o Tu(w) m(dz) = / (Pef) () g(x) m(dz)
X X

Let also 7, = T oTp_10...0T1 and 7 = P, o P,_10...0 P, and note that 7 is the
Perron-Frobenius operator of 7.

Let V C Lo(m), (1 € V), be a Banach space of functions from X to R with norm
| - [lv, such that ||¢|lcc < K1]|¢]|v for some k1 > 0. We assume moreover that if ¢, ¢o

are two functions in V, then the usual product ¢;¢2 belongs to V and satisfies ||¢1d2(l, <
k2||d1||v]| P2 for some ko > 0. In what follows, we set x = max(k1, k2). Typical examples
of Banach spaces V are the space BV of functions with bounded variation on a compact
interval of R, or the space H, of a-Holder function on a compact set of R?, equipped with
their usual norms.

We now recall the properties (DEC) and (MIN) introduced in [4] (we use the formulation

of [14]):

Property (DEC): There exist two constants C' > 0 and v € (0,1) such that: for any

positive integer n, any n-tuple (ji,...,Jn) of positive integers, and any f € V,
1Pj, -0 Py (f =m()I, < CYy"lf =m(f)lo-

Property (MIN): There exist § > 0 and v € (0, 1) such that: for any positive integer n,
and any n-tuple (j1,...,jn) of positive integers, we have the uniform lower bound

inf Pj, o---0P;1(x)>4.
Inf Py, 0---0P;1(z) 2

The main result of this subsection is the following corollary.

Corollary 4.4. Let (¢n)n>1 be a sequence of functions in V such that sup,>1 ||¢n|l, < oo.
Let

n

5= 2 Gu(m) = mien(n) . and Vi = [ Sia)m(do).

k=1
Assume that the properties (DEC) and (MIN) are satisfied. Then, on the probability space
(X, B,m),
Wi (Ps,,Gy,) < log(n+1)log(2+ V,,) .

Remark 4.5. Under the assumptions of Corollary 4.4, we derive that
Wi(Py, ) v G1) <V, /2 log(n + 1) log(2 + V)

and
1/2
1P = @lloe < (Vi 2 log(n + 1log(2+ V2))

12



where F,, is the cdf of S,/vV, (the second inequality follows from (3.1)). In particu-
lar, Corollary 4.4 provides a rate in the central limit theorem for S,/vV, as soon as
(lognloglogn)/VV, — 0 as n — oco.

5 Proofs

5.1 Proof of Theorem 2.1

The proof is based on the following proposition:

Proposition 5.1. Let 6 be a positive real and denote by t;,, = (Vn - Vi + 52)1/2. Let

p €]2,3] and r € (0,p]. Then, there exist positive constants C,.,, depending on (r,p) and k,

depending on r such that for every positive integer n,

n 4 n
G (Pat G2 < VIS4G {3 (B minntin, ) )+ 3 0,

4— —
k=1 ko b /oy (1)
(5.1)

where, for £ > 2, Up,(p) is defined in (2.1).

Remark 5.1. When r =1, p = 3 and Uy, (p) = 0 for any ¢, our bound is similar to the one
stated in [24, Theorem 2.1]. However our quantity >, o(t¢—1,,)" PUsn(p) can be handled

in many cases (see Section 4) while his condition V, 1(M), = 1 a.s. is very restrictive.

We end the proof of the theorem with the help of this proposition taking § = ad,.

Hence we shall give an upper bound for

n 4
1 . o
>~ (= B(eh min(ss i D) + 757)
k=1 "kmn k,n

where tj,, = (a?02 +0p + -+ 02)Y/2. With this aim note first that

1 . ol _
tgﬁE(fi% min (Kt n, ‘fk‘)) < tgifrwn(lﬁ’an 1tk,n) )
k.n kn

where 1, (t) is defined in (2.3). Let 6 = 0% /d,. Note that since o < 1,

2 ~2 ~2
O O aoy

— <
2 2, ~2 9 = "5 | =2 n ~2
ten O F0pt+0n T a +aptad 0

where o = (a? 4+ 1) /a®. Let up = a® + oYy, 67. It follows that

0,% Up—1 — UL o afupor—ug)  aag

% T (upo1 —ug) /ot up (up_1 —ug) +aur ap +a

13



where
ar = (up—1 — ug)/ug -
But since a? > 1 we have a < 2. Hence, for any = > 0,

ax
T+«

< log(1 + ),

implying that ,
o
—* <log(1 + ay) = log(ug—1/uk) - (5.2)

k.n

It follows that, if » > 1, since ¢ — 9, () is non decreasing and tim < 62uy, (since a > 1),

2

o r—
Unlindy thn) = g a(ndy b )t < 2008 (v / VN (e T) Oy ™D

3—r
tk,n k.n

2
Oy

r— Uk—1 1 Vuk—1 (Ko
< 2oy [ g <ot [V )
va, T Vo x
Hence, if r > 1,
Z %wn(ﬁr(sgltk n) S 252_1/ e de
thm 7 a =T
k=1 "kn
Vvn(a) /63
<20, / dnlret) (5.3)
a T

We study now the case r < 1. With this aim, note first that taking into account that
&,% <1, a <2 and that a > 1, we have

o =02(a?+ Y 57) 2 a2(a® + a)Mo2uk 1 > SRwy /3, (54)
l=k+1

(for the first inequality, use the fact that a?(a® + o)~ < a™!). When r < 1, taking into
account the upper bound (5.4), we then derive

2

o r—
a0y i) < 2 % 30N/ 25r =1y D2y (e Juge) Tog (y/in 1/ v/ -

k.n

Hence, when r < 1,

n 2
> ok (i M) < 2 % 30D/2g7
k=1 "k,n

/ Von(@)/8 djn(”rx)d

for

14



The bound (5.4) and (5.2) also implies that, for any r < 2,

n 4 2 n 2
Tk 2 Tk —r)/25r Tk 1
Zt“ r S 5nzt2 / 5nZtT X eIz
k=1 k=1 k.n kn k=1 kmn  Up_q
T T T T " 1 k=1 1
< 2 3 /257 S log( i /) X ey = 2 x 322 3! )/2/ “do
k=1 k 1 k=1 Up_1 Vi
Vo q
<2x32° ’“/25’“2/ dx<2><3(2 ’”>/25’“/a i da.

When 7 > 2, we use the fact that 7 = < 62uy to derive that

n 4 Juo 1
Uk
E t4 - < 252/{1 :E3—rd$'

k=1

All these considerations end the proof of Theorem 2.1. It remains to prove Proposition 5.1.

Proof of Proposition 5.1. Let (Y;)ien be a sequence of N(0,0?)-distributed independent
random variables, independent of the sequence (&;);ey. For n > 0, let T;, = Z" Y;. Let
also Z be a (0, §?)-distributed random variable independent of (&;);en and (Y;);en. Using
Lemma 5.1 in [6] together with the fact that, for any real ¢, ¢, (P.x, Pey') = |¢|" (- (Px, Py),

we derive that for any r in |0, p],
(P, Pr,) < 2C-(Pyg, % Py, Pr, % Py) 4 426" . (5.5)
Consequently it remains to bound up

Cr(Pu, * Pz, Pr, x Pz) = fsu/{) E(f(M,+ Z2)— f(T,+ 2)).
€A,

Recall that V,, = 3" | 2 and, for any k < n, set
fv—vi (@) = E(f(z + Tn — Tis + Z)).
Then, from the independence of the above sequences,

E(f(Mn+Z)_f(Tn+Z)) :ZDIC7
k=1

where
Dy =E(fv,—v, (Mi—1 + &) — fv—v, (Mp—1 + Y)) .
By the Taylor formula, we get
Jvn—vi (M1 + &) — fv—vi (M1 + Y)

= Fe (1) (6 = Vo) + 5y, (M) (@ = Y2) = 212, (M) (VD) + B,

15



where )
3 (4
Re < (1 lloo A Iy looltl) + 522y, oo Vi
Using the fact that (x)ren is a sequence of martingale dlfferences independent of the

sequence of iid Gaussian random variables (Y% )ren, we then get

E(f(Mn+ Z) — f(Tn + Z)) ZE F_y (My—1) (€2 — V) +ZE Ry).  (5.6)
k=1

Note first that

1
B0t < B (1l A 217y loléal)) + ZENE oo

Recall the notation ty, = (02 + 07 4+ + 02)1/2. By Lemma 6.1 in [6], we have that for
any integer ¢ > 1,

1) vl < eriti (5.7)
Hence, setting k, = 6¢;,.2/c;. 3, we get

Cr3 1 .
E(Ry) < 22 x B min(stin, [6)) +

6 k,n

4

Cr4 Ok
4—r "

8 tk,n

(5.8)

For r = 1, we can take k, =6, ¢;,3 = 1 and ¢, 4 = 8/5.

We study now the quantity Y°p_ E(fy; v (My—1)(§f — Y}2)). With this aim let us
consider a sequence (Y) of real-valued random variables independent of (Y%) and () and
such that £(Y}) = L£(Y%). Note first that

E((f), v, (M1 +Y{) = i, v, (M) (2= Y2)) = B(7y, (Me_)Y{(€8— V) +E(Ry) ,

where, by taking into account (5.7) and the independence between (Y}), and (&, Y )k,

E(IRLD) < £y, Bl ()% - M<m%§
Since E(Y})) = 0 and (Y}, is independent of (&, Y)x, we get
Z ’E (¥ v (M1 + Vi) = f1, v (Mi—1)) (&5} — ’ 2 (5.9)
Now
E(f{h v, (M1 + YD)(EE = Y2) = E(fl _v,(Mp_1)(&} — V)
k
= E((fllnka,l(Me—l +Tho1 —To—1) — fv, v (Moo + Tp1 — To—2)) (& — Y,f))
=2

k
= ZE((f”n,Véil(MZ—l) — [t v (Mg + Tpy — Ty—)) (6 — Yk2)> :
=2

16



Hence, by using Lemma 6.1 in [6], there exists a positive constant ¢, , depending on (r, p)

such that for any n > 1,

D E(fh v (M1 + Y& = 7))
k=1

=) E (f"n Vi (Me1) = fv, v, (Me—y + Ty = Ti2)) (Eg—l(g’%)_a’%))

(=2 k=0

1
(V= w1+52pr/2H|5“_”’1’p Q‘ZE“@ =ab)|],- G0

IN

Crp

Starting from (5.6) and taking into account the upper bounds (5.8), (5.9) and (5.10),
the desired inequality follows since for any integer ¢ € [2,n] and any p € [2,3], we have
E(|Ye-1P7?) < (E[Yea |2 < 0} 7. -

5.2 Proof of Corollary 4.1

For any k > 1, let Fj, = o(X1,...,Xk) and Fo = {0, Q2}. Write first
Sn =) (Ex(Sn) — Ex—1( den

Note that (dj n)1<k<n is a triangular array of martingale differences with respect to (Fk) k>1
and that V,, = >"}_; E(dzn) = E(S2). Hence, setting §,, = maxj<p<y, ||dk.n|2 and applying
Proposition 5.1 we get that, for any a > 1,

n

’dk n|p) O-I%n 1
Wl(Pg ,Gvn) < ady, —l—Z( /2 327 >+ 73 Uzn(p), (5 11)
=B @) B L) S B )
where oy, = ||dj |2 and
p—2
Bgn Z]E d —I—CL2(52 and Ugn = H ‘dg 1n‘\/0'g ln)‘ Z(E@ 1 dkn ‘H .
Proceeding as in the proof of Theorem 2.1, we get that
5 Okn
> 5 <. (5.12)

k= 1Bk+1n( )

Next, setting o = (a® + 1)/a?, note that

n
Biiin(a) >a™t <a25,% + aim +a Z aZn> > 271 By n(a).
l=k+1
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Note also that
Uﬁ,n(p) =

n
R DICUSEL NI
k_
But, setting Ay, ,, = E;(S, — Sk), note that the following decomposition is valid:
dk,n = Xk,n + Ak,n - Akfl,n . (513)

Hence

n
p
P < X5+ Aenl A1l < lom eIV l5+2( D lain IE(ViIGe-1) )
=L

. . —1
But, by convexity, setting 8; = [[E(Y;|Gr—1)llp (> onr IE(YalGe-1)llp) , we get

3

(Z’azn’”E Y‘gé 1 ”p) Z ai,n’p/@il_pHE(Yi‘géfl)”g

=L
(Z IEYaldo)llp)” (ViIGe-)lly
implying that
ldeally < (3 IEVlG)) " 3 i PIEYEIGE) (5.14)
u=0 =L
It follows that
p—2 p—2 . p—2 nP- 2
max [ldel[f7 < max Ja,| (ZHE (YalGo)l ) = max [, . (5.15)

On another hand

I3kl = () 53

= |Ee-1(Sn — Ee—1(Sn))® = E(Sn — Ee—1(Sn))llp/2
< |Ee-1(Sn = Se-1)? = E(Sn = Se-1)°llpj2 + 2| Ee-1(Sn = Se-1) |5 - (5.16)

Note that

IEe—1(Sn — Se—1) = E(Sp — Se=1)?|lp2 < 2 Z Z IEe—1(XinXjn) — E(XinXjn)llp/2

i=0 j=i
n n
<2) Y i@ nl[E(YViYj|Ge1) — B(YiY))||,2
i=0 j=1
n 2i—4 n n
<2) Y iy nlB(YiY)(Ge-1) —EYViY)lpp+4> D il ViEY;G)ll -
i=0 j=i i=0 j=2i—0+1

(5.17)
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Hence by stationarity,

[Ee—1(Sn — Se—1)* = E(Sp — Se—1)?[|,/2

n nA(2i—

<4(Z Z ozmajn i e+1+2 Z alnaj’n j— z>‘

=0  j=i i=f j=2i—0+1

It follows that

IEe_1(Sy — Se—1)* —E(S,, — S@*l)ZHp/Q

j—L n n—i
<2<Zam — L+ 1)\ g+1+22am Z )\u+2a§,n Z )\u>.
j=¢ u=[(j—0)/2] i=L u=i—{+1

In addition, setting 8; = ||E(Y;]Gr—1)|lp( >n_y HE(Yu\gg,l)Hp)fl, we get by convexity,
1Ee-1(Sn = Se-1) (ZamnE ilGe i) Zaz B EIGe )1

< Z IE(YulGo)ll» Z a} W E(YilGe-1)llp - (5.18)

u=1 =0

So, overall, recalling that n, = >_"" , [|E(Y;|Go)||p, we get

-2
Urn(p) < max |l P08 (Zam — 0+ DA

$Y 0k Y A Y el EMIGl,)
J=t u=[(j-0)/2] i=f

Hence, setting

Aig=G=L+ DA+ Y Au+ mlEYieega|Go)llp -

u=[(i—0)/2]
we get,
= 1
- p—2 —2
(p—1)/2 UZ,n (p) < 121?;(71 ’aﬁ,n| Z p 1)/2 Z Az -
=2 Bﬁ,n (a’)

Since, for any ¢ < n,

ZAM < Z((u + DAy + 1 |E(YulGo)llp) < An + 77% )
/=1 u=0
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it follows that

—— p=2p=2 2 __m
)3 B () Utn(p) < max launl”*nf ™ (An +17) 3 Pl (5.19)

=2 =1

Let
maxi<<n | n| max(||Yollz, vV27rm) + 2maxi<p<pn 1 || Agnll2

maxi<g<n ||dk,n||2 ’

where m = infyc_r - fy(t). The decomposition (5.13) entails that a > 1. On another
hand, for any integer ¢ in [1,n],
Byn(a) =B(Sp — Se_1 — Ag_1)* +a%62 = E(S, — Sp_1)? —E(Ar_1)? + a2

> (1S = Se-alf + max Jayal* max(|Yp|3, 27m)

But

™

Var(S, — Si—1) = / Z oy neltk’ dt = 27rmz ak "

T k=t T k=t

It follows that, for any integer ¢ in [1,n],

n
By n(a) > 27rm< Z a?n + max aj n) . (5.20)
i={

Starting from (5.19) and taking into account (5.20) and the fact that m > 0, it follows that

n

> i Un®)
¢

1)/2
> B,
n 2
< max Jaga /P22 (A +07) Y =

1<t<n ; n 9
i=1 Z] — j’I’L + maxi<g<n Opn

>(p*1)/2 '

Hence proceeding as in the proof of Theorem 2.1, we get

- (3-p)/2
max |ag, [P 2nE 2 (A, + 77721)(2 a?,n> : if p € (2,3)
(=1

n 1 1<t<n
Z B(p_l)/Q(a) U@,Tb(p) < n
=2 Dt max Jagaln(An +72)log (m 'Y af,) ifp=3.
1<<n —
(5.21)
On another hand, taking into account (5.14) and proceeding as before we get
n
(3-p)/2
p—2 2 :
. , ax foyn| nn(;ae,n) if pe(2,3)

el < - (522

B(pfl)/Q(a)
=2 Pin -1 2 : —
Jax. lovg |12 log ( ;1 a4,n> if p=3.
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Starting from (5.11) and taking into account (5.12), (5.21) and (5.22) together with the
fact that "
ady < max Jag| (Vi + kZO IE(YiIGo)2 ) .

the corollary follows.

5.3 Proof of Corollary 4.2

The proof follows the lines of the proof of Corollary 4.1. The only difference is in the choice
of a. We take here

Max]<k<n |ak7n|(max(||Yo||2, 27Tfy(())) + 2maxi<p<n—1 || Akn

2+ VK(n)

maxi<k<n [[dinll2
where K(n) = (Zk21 k2 |vel) Z?jll |t — ani—1/?. Once again, the decomposition (5.13)
entails that ¢ > 1. On another hand,
Bg’n(a) = E(Sn — Sg_l — Ag_1)2 + a2(52 = E(Sn — Sg_l)2 — E(Ag_1)2 + CL25,2L
> 180 = Se-a 5 + max Jagq|*(max([|Yoll3, 27 fy (0)) + K (n).

But, setting &, = au,p if © € [¢,n] and 0 otherwise, we get

n

Var(Sp — Si—1) = D vk Y Gt =2mfy (0) Y 0l =270 > (& — dig)”

keZ €L =0 keZ 1€EL

Setting K =} ;54 k2|vkl, it follows that

n+1 n
IS0 = Se-1ll3 + KD loim — aicinl® > 21f3(0) Y 02,
i=1 1=/

implying that

> 2 2 ) .
By (a) > 27 fy(0) ( Z ag, + 11%11?<Xn Qo

i={

Using the fact that fy(0) > 0, the rest of the proof is the same as that of Corollary 4.1.

5.4 Proof of Corollary 4.3

We start as in the proof of Corollary 4.1 and use the notation introduced there. So we
have the upper bound (5.11) with p = 3. Recalling the notation Ay, = E(S, — Sk|Fi), we

select

_ maxi<k<n [ Xill2 + 2maxi<p<n—1 [|Aknll2

maxi<k<n ||dk,n”2
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The decomposition (5.13) entails that a > 1 and also that

> il = | - di
1=k i=k

2

2
9 = HSn - Sk—l - Ak—l,nHQ .

It follows that

n
Bn(a) =Y |ldinl3 + a*o;
i=k

=[S0 = Sk-1ll3 — | Ak-1n

2 + max X 2
2 A
2 (1gkagn | Xkll2 + lgmkgaxn{1 I k,an)

> (180 — Sk I3 + max | Xk3.

Using (H2) and the fact that C,, > 1, we derive

1 Cn Gy
Bin(a) = 200 1Xell3 + maxi<pen [ Xl ~ Vi,

(5.23)

On another hand, for any 1 <k <n—1 and any > 1/2, by the definition of the p-mixing

coefficients,

n 2 n
leal < (30 IEGIFDI) < 3 (6= kPIEKAF)I
{=k+1 {=k+1

< D (= R)X|I50% (€ — F).
t=k+1

According to (Hi) we can take n > 1/2 such that -, *1p%(¢) < co. Hence
[Agnllz < max [[Xg[l2,
1<k<n

implying that

ad, < max ||Xk”2 .
1<k<n
On another hand, from decomposition (5.13),
Idall3 < 9 (Kall Xull3 + | Apall} + 1 4k-1]3)
But, for any 1 < k <n —1 and any n > 2/3, by the definition of the p-mixing coefficients,

n 3 n
lAenlly < (D0 IEGIFDN) < Y (0= RPIEKAF
l=k+1 l=k+1

< Kn Y (0= RPEX T3 < Kn Y (0= k)P X300 — ).
(=k+1 (=k+1
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So, overall,

(Idx.nl?) HXkHz
ady, + < max Xl + K,,C,,
ZBk+1n 1<k ” ell2 ; Ve
KO Z”: Sl =k + 1P| Xo|3p% (¢ — K + 1)
Vk,n
X
k=1 an

+KCZHXZHQZ£ k4102 (0 — k+ 1)
= Ven i3

According to (Hi) we can take n > 2/3 such that >, 031p2(¢) < oo. Hence, it follows
that

(Idknl®) 1Xell3
ady, + < Ky + K,Cy
Y e DIt

With similar arguments as those leading to (5.3), we get

n
ad, +Z Elldinl) < Ko+ K Crlog (14D Il13) -
Bk+1n =1

On another hand, we have

Uen(3) < 2de-1,allz| Y (Ee-r(d ) — 03, -
k=t

To give an upper bound of this quantity we start from (5.16) with p = 4. Note first that

IEZ_1(Sn — Se-1 H2<2ZZHEe LX) Ee1 (X5) ]2

i=0 j=1
n 2i— n n

<2y Z B (X)X lla+2) 0 > (1 X1 (X)]2-
=L j=t =0 j=2i—0+1

Hence, by the definition of the p-mixing coefficients, we get

IEZ_1 (S = Se-1)l2 < 4K Y (i = )| Xillap(i — €) (5.24)
=0

On another hand, by the definition of the p-mixing coefficients, we have: for j > i > ¢,
[E(Xi X1 Fe1) — E(XiXj)ll2 < [[XiXjll2p(i — ) < K| Xill2p(i = ), (5.25)
and

IXE(X1 7)1 = E(E(X?X;1F) X)) < Kal XGiE(X;1F) 2] X120 — ) (5.26)
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Hence starting from (5.16) with p = 4 and taking into account (5.24) and the upper bounds
(5.17) and (5.18) together with (5.25) and (5.26), we derive

Uen(3) < Knllde-1nll2 Y |1 Xill2(i = £+ 1)p(li = £]/2).
i={

Hence, taking into account (H;) and (5.23),

n

(=2 2<(<i<n Be"( )
I de— 1nHz 13 \ ¢
< K, k+1)p(k/2
(Z e ;Ban(a) 3+ Dolh/2
e ln”z —~ |IXill3
< OK, ! ,
( — B, ”; vm(a)>

since By_1 ,(a) < 2By p(a). With similar arguments as those leading to (5.3), we get

z le< Ua() < O Culos (143 1413).
" k=1

This ends the proof of the corollary since Y p_; || Xk||3 < CpVa.

5.5 Proof of Corollary 4.4

As we shall see the result will use an approximation by a “reversed” martingale differences

sequence. Hence, as a preliminary, we first state the following fact:

Fact 5.1. [Reversed martingale differences sequences] Let p € (2,3]. Assume that (dp)nen
is a real-valued sequence of reversed martingale differences in ILP with respect to a non-
increasing sequence (Gp)nen of o-algebras. This means that for any integer n, d, is G-
adapted and E(d,|Gpi1) = 0 a.s. Let M, = Y, dy. Note that M, = Y p_; & with
énk = dp—gt+1. Clearly (&nk)1<k<n is a sequence of martingale differences with respect
to the increasing sequence (Fin)r of o-algebras with F,, = Gn_g+1. Hence, applying
Proposition 5.1, it follows that (5.1) holds with ty, = (E?:_ll E(d?) —1—52)1/2 replacing ty .,
dy, in place of &, %H’n in place of ty—1 , and

0
Uen(p) = ||(desa| v oe2)?%| 30 (B(d(Ges1) - 0F) (5:27)
=1

in place of Upp(p). In particular, the following “reversed” wversion of Theorem 2.1 holds:
setting E(d?) = o7 and ¢n(t) = sup;<p<y, o} *Einf(t8,d2, |dy|?), there exist positive con-

stants C.,, depending on (r,p) and k, depending on r such that for every positive integer

24



n and any real a > 1,

W 1 Y ()
PG < Co (o, [ gyt [ e,

a X

n—1

ﬁkn )
424”5 . (5.28
+; a252+z )(p r)/2> + \fa n ( )

We go back to the proof of Corollary 4.4. Let B, = 7,, !B and b = b — m(on(y))-
As quoted by Conze and Raugi [4], the following martingale-coboundary decomposition is
valid: for any n € N,

Gn = Pn — by + hpg1 0 T, (5.29)

where (dy,)n>0 defined by d,, = 1, 07, is a sequence of reversed martingale differences with
respect to the filtration (By,)n>0 and (hp)n>0 is such that m(hy,(7,)) = 0, and there exists
a positive constant K such that Supn>0 |hnlloo < K.

Set My, =>"1_,dn and V(M,) = [ M2(z)m(dz) =35, [ d2(x) m(dz). We have

Wi(Ps,,Gv,) < Wi(Ps,, Pu,) + Wi(Par,,, Gvu,y) + Wi(Gy ), Gvi,) -

Using that W1(Gyar,), Gv,)) < |V V(M) = VVa| < ||Sn — Myl|2 and the martingale-
coboundary decomposition (5.29), it follows that

Wi(Ps,, Gv,) < Wi(Pu,, Gv(ur,)) + 481;18 [hnlloo < Wi(Pu,, Gy a,)) +4K . (5.30)

Since sup,,> [|dn /oo < 00, Corollary 4.4 will follow from Fact 5.1 provided we can suitably
handle the quantities H Zle(E(dﬂBgH) - E<d$))”1 With this aim, note that by (5.29),

we have
d? = §3(rs) + 261(7) (ha(7s) — higa(ris1)) + (hi(mi) — hisa(1i1))
implying that
[E(dZ|Bes1) —E(d]) oo < NE(Y] (1) =17 (7)) 1Bes1) oo+ IE(R (7:) =m (B (7)) 1Bes1) [l oo
+ [E(hZ 1 (1) — m(hi 1 (Tir1))Beta) oo + 2B (i) ha(7i) — mU(s (7:)hi(7:)) [ Bey1) oo

+ 2| E(hi(1i) hit1 (Tit1) — m(hi(7i) Pt (Ti1)) [Bet1) o
+ 2||E(¢i (1) hit1 (Tis1) — m(i(7) his1(7i41)) [ Beg1) oo - (5.31)

From Relations (1.8) and (1.10) in [4], we get that for any function f in V and any i < ¢,

B(f () — m(f (7)) ) = (T e 2 Penldimil)

.32
g1l )OTZH’ (5.32)
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where f; = f —m(fm;1). Hence taking into account the properties (DEC) and (MIN), we
get that

IE(S (7)) — m(f (7)) Bes)lloo < 56| Perr 0 -+ 0 Pipa(fimid)

< 55_107€+1_i||ﬁ7ri1||v .

Hence, using Relation (3.10) in [4], we get overall that there exists a positive constant M

such that, for any function f in V and any i < ¢,

IECS () = m(f ()IBes)lloo < My fllo - (5.33)

Taking into account (5.33), it follows that the sum of the four first terms in the right-hand

side of (5.31) can be bounded by a positive constant times
7 (sup a2 + sup 6 12) - (5.34)
n>0 n>0

To take care of the two last terms in (5.31), we shall use the following fact: for any functions

f and g in V, by using twice (5.32) and setting

Py (fmil)
Tit1l

Qit1f =

the following relation holds: for any 7 < /,

E(f(7:)g(7i+1)|Begr) = E(g(7ir1))E(f (7:) | Bis1)| Bet1)

P, i1 P, ..o P . 11
- E(ﬂOTiH(Z?i{?)) OTz’+1‘B€+1> = ( 410" 0 7;:21(517Q2+1f71+1 )
‘ +

)OT£+1-

Therefore, for any functions f and g in V and any i < ¢,

E(f(7i)g(Tit1) — m(f(7:)g(Ti+1))|Bey1)

— (Péﬂ o0 Pa((9Qis1f — m(gQis1f))mis11)
7Tg+11

) O Te+1 -
Hence, taking into account the properties (DEC) and (MIN), we get that for any ¢ < ¢,

IE(f(i)g(Ti1) — m(f(7:)g(Tiv1))1Bes1) o
< K8 M| Pry o0 Pra((9Qis f — m(9Qisa ) i1 D)o
< k0O T (9Qis1 f — m(9Qisr f))miga 1]l -

But

(9Qit1f — m(gQiv1f))miv11lo < |(9Qis1f)mit1l]lo + [Mm(9Qis1f)mir11]lw
< NgPivr(fmil)|lo + 119Qis1 flloo it 11lo < Kllgllo | Pira (fmil)[lo + [|9Qit1.f loo i1 1]l -
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By the property (DEC) we have ||Pit1(fmil)|ls < k3||f|ls where k3 is a positive constant

not depending on i and on f. On another hand, by the properties (DEC) and (MIN), we

have
19Qis1flloo < K6 |glloo | Pis1 (fmil)llo < Kall fllollgllo

where k4 is a positive constant not depending on (i, f, g). So overall, there exists a positive

constant M such that, for any functions f and g in V and any i < ¢,

IECf ()9 (is1) = m(f (72)g (Tir))IBes)lloo < My N fllollgllo - (5.35)

Taking into account (5.35), it follows that the sum of the two last terms in the right-hand
side of (5.31) can be bounded by a positive constant times the quantity (5.34). So, overall,
for any ¢ < ¢,

|1l E (@1 Ber) — E(@) |, < sup ldloc min(E(a), ). (5.36)

Therefore, recalling the notation (5.27) and setting 02 = max;<;<, E(d?) and a? = 14,2,

we get

n—1 n—1

S i)« 5y e
a252+2k L E(d? 1 +52+Zk 1 (d%)'

(=11
Let a be a positive real and ¢, (¢) = [a log(¢)]. Let £o = inf{f > 1 : £ — py(¢) > 1}. We

then have

éi)

Upn(3 &
Za252+62k1 Z ;
<<Z

L)

n—1 V4
SO E(dzj)
=1 i=l—pqa(

i 1Tt 0n + 2= E(d})

n—1

E(d?)
Lyeall) 1 (logn i )
P o) Yy B

Selecting « such that alog(1/4) > 1 and using similar arguments as those developed in
Theorem 2.1, it follows that

2_: 252 +Ug 2 E(d2) < 1+ (logn)log(1l + V(My)).
a k=1 5(d

Hence by taking into account this upper bound in (5.28) (with » = 1 and p = 3), we derive
that

Wi (P, , GV(Mn)) + 45‘;% 17l oo

<1+ max E(d?) + <1réla<x |dilloo + log n) log(1 4V (M,)). (5.37)

<i<n

Starting from (5.30) and considering (5.37) together with the fact that sup;> ||dil|c < 00
and that there exists a positive constant B such that V(M,) < 2V,, + B, the result follows.
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