Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor - Archive ouverte HAL
Article Dans Une Revue Chaos: An Interdisciplinary Journal of Nonlinear Science Année : 2021

Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor

Résumé

When a chaotic attractor is produced by a three-dimensional strongly dissipative system, its ultimate characterization is reached when a branched manifold-a template-can be used to describe the relative organization of the unstable periodic orbits around which it is structured. If topological characterization was completed for many chaotic attractors, the case of toroidal chaos-a chaotic regime based on a toroidal structure-is still challenging. We here investigate the topology of toroidal chaos, first by using an inductive approach, starting from the branched manifold for the Rossler attractor. The driven van der Pol system-in Robert Shaw's form-is used as a realization of that branched manifold. Then, using a deductive approach, the branched manifold for the chaotic attractor produced by the Deng toroidal system is extracted from data.
Fichier principal
Vignette du fichier
CHA20-AR-ROES2020-01171.pdf (5.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03110714 , version 1 (14-01-2021)

Identifiants

Citer

Sylvain Mangiarotti, Christophe Letellier. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021, ⟨10.1063/5.0025924⟩. ⟨hal-03110714⟩
105 Consultations
140 Téléchargements

Altmetric

Partager

More