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When a chaotic attractor is produced by a three-dimensional strongly dissipative system,
its ultimate characterization is reached when a branched manifold — a template — can be
used to describe the relative organization of the unstable periodic orbits around which it is
structured. If topological characterization was completed for many chaotic attractors, the case
of toroidal chaos — a chaotic regime based on a toroidal structure — is still challenging. We
here investigate the topology of toroidal chaos, first by using an inductive approach, starting
from the branched manifold for the Rössler attractor. The driven van der Pol system — in
Robert Shaw’s form — is used as a realization of that branched manifold. Then, using a
deductive approach, the branched manifold for the chaotic attractor produced by the Deng
toroidal system is extracted from data.

Dedicated to the 80th birthday of Otto E. Rössler

Chaos is related to the unpredictability of

natural behaviors like atmospheric condi-

tions since Edward N. Lorenz investigated a

simple model for the Rayleigh-Bénard con-

vection. He also described the architec-

ture of the so-called Lorenz attractor in

terms of “isopleth”, showing that the tra-

jectory was within a surface. A few years

later, William introduced the concept of

branched manifold to characterize this sur-

face. With Joan Birman, he later linked

branched manifold with the knot theory.

Otto E. Rössler converted it into his intu-

itive “paper model” to describe the archi-

tecture of chaos. Rössler then constructed a

zoology of chaos by proposing topologically

inequivalent attractors. He was also look-

ing for chaotic behaviors structured around

torus, now called toroidal chaos. Neverthe-

less, no branched manifold was proposed to

characterize it. Typically, a branched man-

ifold is made of strips which require well-

defined edges. Since, by definition, a torus

is a surface without boundary, constructing

a branched manifold for toroidal chaos is a

challenging problem. This is here addressed

by inserting an “allowed slit” as Rössler in-

troduced in his “blender” for describing the

so-called Rössler attractor.

a)Electronic mail: sylvain.mangiarotti@ird.fr
b)http://www.atomosyd.net/spip.php?article1; Electronic
mail: christophe.letellier@coria.fr

I. INTRODUCTION

Since the seminal paper by Lorenz on the sensi-
tivity to initial conditions presented by some solu-
tions to simple dynamical systems,1 chaotic attrac-
tors are described by using a topological approach.
The great difference with a geometrical approach is
that in topology, distance is not important: what
counts is the relative organization. This branch of
mathematics was initiated by Leibniz.2 The first
paper about the analysis situs was published in
1771 by Alexandre-Théophile Vandermonde and is
devoted to the moves of knight on a chessboard.3

Then Gauss introduced one of the relevant topo-
logical invariant which is still used in the de-
scription of chaotic attractors, namely the linking
number.4,5 Knot theory was initiated in 1848 by
Johann Listing,6 and became intensively investi-
gated in the late 19th century, as well exempli-
fied by Peter Gunthrie Tait.7–9 A breakthrough
was then introduced by Henri Poincaré under the
name of analysis situs.10 His objective was to in-
vestigate manifold with topological invariants. He
also developed a qualitative approach of the solu-
tion to nonlinear differential equations.11,12 In the
dynamical systems theory, solutions to strongly
dissipative systems are sketched by surface which
can be split and joined, leading to the concept of
branched manifold as introduced by Williams.13

With his intuitive approach, Otto E. Rössler des-
ignated branched manifold as “paper sheet model”
and used them to describe the Rössler attractor as
the union of a “normal” strip (without half-twist)
and a Möbius strip (with one half-twist).14 Rössler
was used to distinguish different chaotic attractors
by sketching them with paper model.14–16
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The population of unstable periodic orbits of
the Lorenz system was extensively investigated
by Joan Birman and Robert F. Williams.17,18

Branched manifold was considered as a knot-
holder since periodic orbits are knots. To explain
experimental data with the concept of branched
manifold, Robert Gilmore and co-workers used
linking numbers.19 He termed “template” the ob-
tained branched manifold. Many chaotic at-
tractors produced by three-dimensional strongly
dissipative systems were then characterized by
branched manifolds.20–32 Nevertheless, the case of
toroidal chaos was left as an open problem.33 The
first reason is that, to the best of our knowl-
edge, there are only a few toroidal chaotic at-
tractors produced by three-dimensional dissipa-
tive systems, namely by the Langford system,34

the Deng toroidal system,35 and, the Li system.36

There is a system proposed by Rössler but it only
produces a metastable toroidal chaos.37,38 The sec-
ond reason is that toroidal surface has no bound-
ary, a property required for constructing branched
manifold.39 It is therefore rather difficult to deter-
mine a partition of the attractor and to construct
a symbolic dynamics, two steps which greatly fa-
cilitates the topological characterization.27

We therefore here investigate the challenging
problem of providing a topological characteriza-
tion of toroidal chaos. The subsequent part of
this paper is organized as follows. Section II de-
scribes, using an inductive approach, the construc-
tion of a branched manifold for toroidal chaos from
the template associated with the Rössler attractor.
Section III provides an example of toroidal chaos
described by the branched manifold so obtained:
this is the case of the driven van der Pol system.
Section IV discusses, according to a deductive ap-
proach, the identification of the branched manifold
for the toroidal chaotic attractor produced by the
Deng toroidal system. Section V gives some con-
clusions to this work and suggests some perspec-
tives.

II. THE SIMPLEST BRANCHED MANIFOLD

FOR TOROIDAL CHAOS

In topology, a ring torus is homeomorphic to
the Cartesian product of two circles S1 × S1. It
is a compact two-manifold of genus-1 which can
be described as a quotient of the Cartesian plane
under the identification

(x, y) ∼ (x + 1, y) ∼ (x, y + 1) .
This can be sketched as in Fig. 1. This procedure
will be used for constructing a branched manifold
for toroidal chaos.
As shown by Curry and Yorke, one possible sce-

nario for getting toroidal chaos is to introduce a
folding on the torus.40 This can be obtained by

FIG. 1. A genus-1 torus can be constructed from a
rectangle whose edges are joined (the top with the bot-
tom, the left with the right).

pinching the torus, stretching it, folding it, and
squeezing the surface to retrieve a simple tube
(Fig. 2). Note that to get mixing properties, it
is required to cut and glue the toroidal surface to
produce a simply folded torus: otherwise it is only
pleated and there is no mixing, that is, it can only
lead to quasiperiodic regime. From Fig. 2(d), it
can be seen that the folding produces three lay-
ers superimposed: it is therefore necessary to use
three strips to describe a folded torus.

(a) Cutting (b) Opening

(e) Squeezing (f) Gluing

^

(c) Pinching & stretching (d) Folding

FIG. 2. Construction of a folded torus starting from
a regular one (a). First, cut it, open it (b) and pinch
it (c). Once stretched, fold it (d), and then squeeze it
(d). Glue it back (f).

The simplest example of a chaotic attractor
with a single folding mechanism is the (non-
toroidal) Rössler attractor which is described by
the branched manifold depicted in Fig. 3.14,27 To
respect the convention of drawing attractor with
a clockwise flow,41,42 we observe the Rössler at-
tractor from the bottom [Fig. 3(a)]. The branched
manifold can be drawn as a “paper model” [Fig.
3(a)] as used by Rössler.14–16 It can also be
sketched for a more explicit representation by in-
troducing an “allowed slit” between the two strips
[Fig. 3(b)]. It is thus clearly seen that there is
a “normal” strip (labelled “0” since with no half-
twist) and a Möbius strip (labelled “1” since with
one half-twist).
We now describe the left part of the branched

manifold from the top to the bottom [Fig. 3(b)].
It is made of a splitting chart to introduce edges
between strip “0” and strip “1”. Then, the local
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FIG. 3. Branched manifold for the Rössler attractor
in the form of a “paper sheet model” (a), drawn in a
direct representation (b), and with the standard inser-
tion convention (c).

torsions are drawn one negative (anti-clockwise)
half-twist for strip “1” and none for strip “0”. The
two strips are joined into a single one at the thick
horizontal line [Fig. 3(b)] where a Poincaré section
would be ideally computed. It is convenient to
use a standard insertion convention for joining the
strips:22 from the back to the front, and from the
left to the right, leading to the standard branched
manifold shown in Fig. 3(c).
It is thus possible to describe this branched man-

ifold by a single linking matrix

Lij = [ 0 −1
−1 −1 ⟧ (1)

where the strips are ordered from the centre of

the attractor to its periphery.42 We use a double
bracket ⟧ to designate the joining chart were strips
are squeezed.42 A simple bar (“∣”) would mean
that the strips are still distinguished (see the case
where two linkers are combined in the next sec-
tion). Elements Lii encode the local torsion of
the ith strip: L00 = 0 for strip “0” and L11 = −1
for strip “1”. Off-diagonal elements Lij = −1(i ≠ j) encode the permutation between the ith
and the jth strips: here, strip “1” is permuted
once with strip “0” in the anti-clockwise direction.
From this linking matrix and the orbital sequence
designating periodic orbits, there is an algorithm
to compute the linking numbers which quantify
the number of times one orbit circles another one
(see27,43,44 for details).
To get a branched manifold for a folded torus

[Fig. 2(f)], we saw that three strips are required.
The branched manifold for the Rössler attractor
must be completed with a third strip. To do that,
we start from the folded torus, insert an “allowed
slit” as indicated by the symbol “∧” in Fig. 2(e).
We thus obtain the branched manifold drawn in
Fig. 4 which is described by the linking matrix

Mij =
⎡⎢⎢⎢⎢⎢⎣

0 −1 −1
−1 −1 −1
−1 −1 0

MQQQQQO
. (2)

Strips are labelled 0, 1 and 0’, from the center
of the attractor to its periphery. We choose 0’
to indicate that it is “glued” to strip 0 when the
toroidal structure is reconstructed. The common
convention with symbolic dynamics is to use the
natural order to label the branches,45 an order that
we combine with the local torsion to respect the
parity of the strip: an even (odd) integer for an
order preserving (reversing) strip). The symbol 0’
should be manipulated as if it was a “2”. The
simplest toroidal chaos is therefore characterized
by a three-strip branched manifold, that is, by a
bimodal map (with two critical points). Note that
it differs from the bimodal chaos observed in the
Rössler system which is characterized by the link-
ing matrix27

Mij =
⎡⎢⎢⎢⎢⎢⎣

0 −1 −1
−1 −1 −2
−1 −2 −2

MQQQQQO
. (3)

To distinguish the branched manifold for a non-
toroidal chaotic attractor from the one for toroidal
chaos, we propose to draw the trivial part of the
template, linking the joining chart — the thick
horizontal line — with the splitting charts (top
of the left side of the branched manifold) as sug-
gested in Fig. 4(b) where the toroidal structure is
sketched. Note that the two branched manifolds
shown in Fig. 4(a) and in Fig. 4(b) are both de-
scribed by the same linking matrix: the two corre-
sponding attractors are thus topologically equiva-
lent.
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FIG. 4. Branched manifold for the simply folded
toroidal chaotic attractor in the classical representa-
tion (a) and in the here suggested representation (b).

Although topologically equivalent, there is a
noteworthy difference between a toroidal chaotic
attractor and a non-toiroidal one. Since there is
two branches which are in fact the sub-branches
of a single one, labelled 0 and 0’ in our symbolic
dynamics, they should not be distinguished for la-
belling the different periodic orbits. As a conse-
quence, the maximum number of period-p orbits
in such attractor is N2(p) where Nb(p) is the max-
imum number of period-p orbits embedded within
an attractor characterized by a b-branches first-
return map. When the attractor is non-toroidal,
the maximum number of period-p orbits is N3(p).
Since N2(p) < N3(p), there is less periodic or-

bits within the toroidal chaotic attractor associ-
ated with the branched manifold of Fig. 4(b) than
in the one associated with the branched manifold
drawn in Fig. 4(a).

III. A DYNAMICAL SYSTEM FOR THE

SIMPLEST TOROIDAL CHAOS

By modifying the van der Pol system

{ ẋ = y
ẏ = αx + (1 − βx2)y (4)

into

{ ẋ = αy + (1 − βy2)x
ẏ = −x , (5)

and applying a periodic driving term not on the
acceleration but on the velocity, Robert Shaw got
the driven oscillator46

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = αy + (1 − βy2)x
ẏ = −x + u
u̇ = v
v̇ = −ω2u .

(6)

This is a semi-dissipative (or semi-conservative)
system, since the dissipative van der Pol system
is driven by a conservative harmonic oscillator.47

This system has thus a continuum of attractors
and the initial conditions must be specified to en-
sure the reproductibility of the results. A toroidal
chaos is obtained with Shaw’s parameter values as
shown in Fig. 5. Due to the conservation of energy
for the harmonic oscillator, there is an integral in-
variant which allows to reduce by one the dimen-
sion of the state space. Moreover, we did not ob-
serve self-crossing of the attractor when embedded
within our reconstructed three-dimensional space,
leading to the possibility to propose a branched
manifold for this toroidal attractor, indeed.

-1 -0,5 0 0,5 1
x

-1

-0,5

0

0,5

1

y

-1 0 1
x’

n

-1

0

1

y’
n

 .

FIG. 5. Toroidal chaos produced by the driven van
der Pol system (6). Parameter values: α = 0.7, β = 10,
and ω = π

2
. Initial conditions: x0 = 0.1, y0 = 0.1,

u0 = A = 0.25, and v0 = 0.

This system has an inversion symmetry defined
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as

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The system is said to be equivariant under the ac-
tion of the inversion Γ, that is, it obeys to29

Γ ⋅ f(x) = f(Γ ⋅ x) . (8)

The toroidal attractor (Fig. 5, left panel) has two
foldings, one (top of the attractor) being mapped
into the other (bottom of the attractor) by the in-
version. In order to exhibit these two foldings,
we used the Poincaré section made of the two
components25,41,48

P± = {(x′n, y′n) ∈ R2 ∣ yn = ±0.3, ẏn ≷ 0} . (9)

In the Poincaré section, each component is renor-
malized within a unit square. The inversion sym-
metry is obvious in this two-component Poincaré
section (Fig. 5, right panel).

It is possible to modd out the symmetry by us-
ing a change of coordinates.49,50 Since the two os-
cillators, the modified van der Pol (x, y) and the
driving harmonic oscillator (u, v) are rather inde-
pendent, one may treat the system by blocks and
use the change of coordinates

ϕ =

RRRRRRRRRRRRRRRRRRRRR

X = x2
− y2

Y = 2xy
U = u2

− v2

V = 2uv .

(10)

The new governing equations are thus

RRRRRRRRRRRRRRRRRRRRRR

Ẋ = 2xẋ − 2yẏ

Ẏ = 2ẋy + 2xẏ

U̇ = 2uu̇ − 2vv̇

V̇ = 2u̇v + 2uv̇ .

(11)

Using that

RRRRRRRRRRRRRRRRRRRRRRRRRRR

x2 =
ρ +X

2

y2 =
ρ −X

2

xy =
Y

2

and

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

u2 =
ρ′ +U

2

v2 =
ρ′ −U

2

uv =
U

2

(12)

where ρ =
√
X2 + Y 2 = x2

+y2 and ρ′ =
√
U2 + V 2 =

u2
+ v2, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = ρ +X + (a + 1)Y − b

2
Y 2

−

√(ρ −X)(ρ′ +U)
Ẏ = (a − 1)ρ − (a + 1)X + Y + b

2
XY

−
b

2
ρY +

√(ρ +X)(ρ′ +U)
U̇ = (1 + ω2)V
V̇ = (1 − ω2)ρ′ − (1 + ω2)U

(13)

To obtain the image of the symmetric toroidal
chaos shown in Fig. 5, one may also apply the co-
ordinate transformation ϕ directly to the original
attractor, leading to the toroidal chaos with no
residual symmetry (Fig. 6).

-0,500,5
 X

-0,8

-0,6

-0,4

-0,2

0

0,2

Y

0,1 0,15 0,2 0,25
Y

n

0,15

0,2

0,25

0,3

0,35

0,4

Y
n

  .

FIG. 6. Toroidal chaos produced by the image of the
driven van der Pol system (6). Parameter values: α =
0.7, β = 10, and ω = π

2
. Initial conditions: X0 = 0,

Y0 = 0.02, U0 = A
2 = 0.252, and V0 = 0.

A single folding is observed in this image attrac-
tor as revealed by the Poincaré section

PI = {(Vn, V̇n) ∈ R2 ∣ Un = 0, U̇n > 0} (14)

shown in Fig. 6 (right panel). There is no global
torsion in this attractor and it is therefore a real-
ization of the branched manifold proposed for the
simplest toroidal chaos [Fig. 4(b)]. This is checked
as follows.
From the Poincaré section PI, we construct a

first-return angular map based on

θn = tan−1 ( Ẏn − Ẏ0

Yn − Yn

) (15)

where (Y0; Ẏ0) = (0.17; 0.26). The return map is
shown in Fig. 7. This map simplifies the extraction
of the unstable periodic orbits by a close-return
technique. As indicated by the map which has no
intersection with the first bisecting line, there is
no period-1 orbit. Two period-2 orbits were found.
We selected the orbits encoded by (10) and (0’1)
for checking the proposed branched manifold.
The symbolic sequences are identified as follows.

The only strip which can be visited by these two
period-2 orbits is strip 1 which is in the middle
of the first-return map, where the folding is not
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-0,5 0 0,5 1 1,5

θ
n    

(π rad)

-0,5

0

0,5

1

1,5

θ n+
1

(01)
(10’)

FIG. 7. First-return angular map to the Poincaré sec-
tion PI of the driven van der Pol system (6). The
two period-2 orbits then investigated are also plotted.
Parameter values and initial conditions as in Fig. 6.

clearly unfolded (this would be rather tricky to
do, if not impossible). The two period-2 orbits
extracted from a chaotic trajectory are shown in
Fig. 8 with the oriented crossings. Crossings be-
tween two orbits are determined in the X-Y plane
and signed with the third coordinate Ẋ used for
constructing a three-dimensional embedding. The
linking number between orbits (10) and (0’1) is
equal to the half-sum of the oriented crossings,
that is, to

lk(10,0′1) = −4 + 2
2
= −1 . (16)

These oriented crossings and the so-induced link-
ing number are well-predicted by a template con-
struction (Fig. 9).

-0,8-0,6-0,4-0,200,20,40,6
X

-0,6

-0,4

-0,2

0

0,2

Y

Negative
Positive

FIG. 8. Link formed from the two period-2 orbits ex-
tracted from the toroidal chaos shown in Fig. 6. Pa-
rameter values and initial conditions as in Fig. 6.

Indeed, as in the X-Y plane projection, four
negative and two positive crossings are found,
leading to a linking number lk(10,0′1) = −1. The

image of the driven van der Pol system (6) there-
fore produces a toroidal chaos which is character-
ized by the branched manifold shown in Fig. 4(b).

01 1010’ 0’1

01 1010’ 0’1

FIG. 9. Template construction of the two orbits (10)
and (0’1) on the branched manifold obtained for the
driven van der Pol system. Only the non trivial part
of it is drawn. Same color convention for the oriented
crossings as in Fig. 8.

IV. TOPOLOGICAL CHARACTERIZATION OF

THE DENG TOROIDAL ATTRACTOR

The Deng toroidal system is a set of three ordi-
nary differential equations reading as35

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = z(λx − µy)
+ (2 − z) [αx(1 − x2

+ y2

R2
) − βy]

ẏ = z(µx + λy)
+ (2 − z) [αy (1 − x2

+ y2

R2
) + βx]

ż =
1

ǫ
[z((2 − z) (a(z − 2)2 + b) − dx)
× (z +m (x2

+ y2) − η) − ǫc(z − 1)]

(17)

This system produces a toroidal chaotic attractor
(Fig. 10).
The toroidal structure is easily exhibited by us-

ing one of the Poincaré section

P± ≡ {(xn, zn) ∈ R2 ∣ yn = 1.5, ẏn ≷ 0} . (18)

The Poincaré section P− is a trivial closed curve,
typical of a torus (Fig. 11, left panel). The
Poincaré section P+, located at the right side of the
attractor shown in Fig. 10, is also a closed curve
but with a folding (Fig. 11, right panel). The route
to this toroidal chaos should therefore be the route
described by Curry and Yorke.40
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FIG. 10. Toroidal chaos produced by the Deng toroidal
system (17). Parameter values: a = 3, b = 0.8, c = 1,
d = 0.1, m = 0.05, η = 3.312, R = 10, α = 2.8, β = 5,
ǫ = 0.1, λ = −2, and µ = 1.155.
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x

n

0

0,5

1

1,5

z
n

-8 -6 -4 -2
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z
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FIG. 11. Poincaré section of the toroidal chaotic at-
tractor produced by the Deng toroidal system (17).
Same parameter values as in Fig. 10.

For smaller µ-values, the bifurcation diagram
is quite complex, with a lot of periodic windows
and period-doubling cascades [Fig. 12(a)]. For
instance, there are one period-doubling cascade
issued from a period-2 limit cycle (µ = 1.18)
and one inverse period-doubling cascade issued
from a period-3 limit cycle (µ = 1.24). Both
lead to chaotic attractors which co-exist for µ ∈[1.2107; 1.2120] within the accuracy of our bifur-
cation diagram, that is, according to dµ = 10−4)
[Fig. 12(b)]. There are many bubblings. Toroidal
chaos is observed for µ > 1.058; before the torus
is not closed and, rigorously, one cannot qualify
it as being toroidal chaos. An example of the
two co-existing chaotic attractors is shown in Fig.
13. The two attractors can be designed as banded
chaos, since they are structured according to a
band which is twisted and knotted.51

We now investigate the toroidal chaos shown in
Fig. 10. Since it is rather difficult to get a partition
of the attractor, we use a color tracer technique as

FIG. 12. Bifurcation diagram of the Deng toroidal
system (17). (a) Full diagram and (b) blow up. Other
parameter values as in Fig. 10.

-8 -4 0 4 8
 x

-8

-4

0

4

8

y

µ = 1.201
µ = 1.213

FIG. 13. Knotted banded chaos produced by the Deng
toroidal system (17). Parameter values µ = 1.211 and
others as in Fig. 10.

follows.52 Different color tracers are injected in a
Poincaré section, and we followed how they are
propagated up to the next intersection with the
Poincaré section. Step-by-step, domains are iden-
tified. We found that a three-strip branched man-
ifold can correctly describe the structure of this
toroidal chaos [Fig. 14(a)]. It has the structure of
the branched manifold we constructed by induc-
tion in Fig. 4(b) but with a global torsion of three
negative half-twists (as shown in the right part of
the branched manifold).
When a global torsion τn is inserted in a

branched manifold, the corresponding linker is ob-
tained by using the composition rule42

L′ = Tη +L ≡ ∣ Tη +L if η is even

Tη +L
p if η is odd

(19)

where L′ corresponds to the linking matrix de-
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8

4 33’

43 3’

(a) Direct (b) Standard

FIG. 14. Branched manifold for the Deng toroidal at-
tractor drawn in a direct representation (a), and with
the standard insertion convention (b).

scribing a global η-torsion Tη associated with the
linking matrix Tη followed by a linker L corre-
sponding to the linking matrix L. Since the global
torsion is here odd, the linking matrix (2) must be
permuted according to42

Mp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mnn Mnn−1 . . . Mn 2 Mn 1

Mn−1n Mn−1n−1 . . . Mn−1 2 Mn−1 1

⋮ ⋮ ⋱ ⋮ ⋮

M2n M2n−1 . . . M2 2 M2 1

M1n M1n−1 . . . M1 2 M1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the present case, Mp =M . Consequently, only
the order of strips is permuted. The corresponding

linker is thus

LD =

⎡⎢⎢⎢⎢⎢⎣
−3 −3 −3

−3 −3 −3

−3 −3 −3

RRRRRRRRRRRRRRR
+

RRRRRRRRRRRRRRR

0 −1 −1

−1 −1 −1

−1 −1 0

MQQQQQO
=

⎡⎢⎢⎢⎢⎢⎣
−3 −4 −4

−4 −4 −4

−4 −4 −3

MQQQQQO

(20)

Note that the labelling of the strips was changed
according to their local torsion: they are now 3, 4
and 3’ [Fig. 4(b)]. The natural order is obtained
in using 3’ as if it would be “5”.
To check the adequacy of the branched manifold

described by the linker LD, we proceeded as for
the driven van der Pol system. We selected the
Poincaré seciton P− to avoid the folding: when
it is possible, it is indeed recommended to avoid
the folding for constructing a first-return map.44

Then, the angle

θn = tan−1 ( zn − z0
xn − xn

) (21)

with (x0; z0) = (−0.55; 1.25) is computed for each
point and the first-return map plotted as shown in
Fig. 15). It does not have the overlap we were not
able to remove with the driven van der Pol system.
Once again there is no obvious critical point in
this first-return map, meaning that the partition
of the attractor is not straightforward. Since there
is no intersection with the bisecting line, there is
no period-1 orbit. The numerical extraction of the
population of unstable periodic orbits reveals that
there is no period-2 orbits.

-0,5 0 0,5 1 1,5

θ
n

-0,5

0

0,5

1

1,5

θ n+
1

(3’34)
(443)

FIG. 15. Knot made of the two period-3 orbits ex-
tracted from the toroidal chaotic attractor produced
by the Deng toroidal system (17). Negative crossings
are plotted as blue disks. Parameter values: µ = 1.35
and others as in Fig. 10.

We therefore selected the two period-3 orbits
(Fig. 16) to compute the linking number to com-
pare with a template construction. After a trial-
and-error approach, we encode these two period-3
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9

orbits as (3’43) and (443), respectively. There are
30 negative crossings, leading to a linking number
lk(3′43; 443) = −15. It is in agreement with the
template construction. In fact, here, we did not
use a drawing as in Fig. 9 but the algorithm for
computing linking number from the linking ma-
trix (see a brief description of its application in
Appendix A).43 The branched manifold proposed
in Fig. 4(b) therefore explains the toroidal chaos
produced by the Deng toroidal system (17) for
µ = 1.155.

-8 -4 0 4 8
x

-8

-4

0

4

8

y

(443)
(3’34)
Negative

FIG. 16. Knot made of the two period-3 orbits ex-
tracted from the toroidal chaotic attractor produced
by the Deng toroidal system (17). Negative crossings
are plotted as blue disks. Parameter values: µ = 1.35
and others as in Fig. 10.

For µ = 1.35, that is, just before a bound-
ary crisis which ejects the trajectory to infinity
(µBC ≈ 1.354), and after the bubble between the
period-2 and the period-3 orbits, the attractor
(Fig. 17) is more developed since it is structured
around more numerous unstable periodic orbits.
Two period-1 orbits are found with a linking num-
ber lk(α,β) = −1 where α and β are the unknown
orbital sequence. Such a linking number cannot be
explained with a branched manifold with a nega-
tive global torsion τ3 = −3. This attractor must be
described by a branched manifold with, at least,
one (most likely two) additional strips. This will
be investigated in forthcoming studies.

V. CONCLUSION

The topology of toroidal chaos was here ad-
dressed in terms of branched manifold. The key
point to open “a breach in the affordable place”
was to introduce an allowed slit at distance from
the folding. The largest strip described in the
toroidal surface was thus split into two strips.

-8 -4 0 4 8
x

-8

-4

0

4

8

y

FIG. 17. Toroidal chaos produced by the Deng toroidal
system (17). Parameter values: µ = 1.35 and others as
in Fig. 10.

A simple folding was thus interpreted in terms
of a three-strip branched manifold and not only
with two strips as for non toroidal chaos like the
Rössler attractor. We were thus able to propose
a branched manifold for the image of the driven
van der Pol system in Shaw’s form and for the
Deng toroidal system. Such a success will al-
low to accurately characterize toroidal chaos, at
least for strongly dissipative systems, that is, when
the toroidal chaos is within a thin closed surface
and clearly characterized by a closed curve as a
Poincaré section. This feature opens the possibil-
ity to construct a hierarchy of toroidal chaos. Thus
the Deng toroidal chaos is just a chaos similar to
the one produced by the driven van der Pol syste
(for the form and the parameter values here inves-
tigated) but with an additional global torsion of
three negative half-twists.
Further investigation will lead to construct the

branched manifold for the Deng toroidal system
just before the boundary crisis. This will allow to
accurately understand the effect on the toroidal
dynamics of the bubbling between the period-2
and period-3 limit cycles. Another system which
deserves attention is the Li system with its rota-
tion symmetry and its numerous foldings. Now
that we unlocked the topological characterization
of toroidal chaos by branched manifold, many new
studies are possible for improving our understand-
ing of toroidal chaos.

DATA AVAILABILITY STATEMENT

All the date used in this work were produced
with basic codes for integrating the two systems
under study by using a Runge-Kutta integration
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edited by T. Küpper, H. D. Mittelmann, and H. Weber
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Appendix A: Computing linking number

As developed by Le Sceller and co-workers,43,
there is an algorithm for computing the linking
numbers from a linking matrix L. Let us briefly
describe it for the particular case of the two period-
3 orbits extracted from the Deng toroidal chaos
characterized by the linking matrix (20). The link-
ing number between two orbits α and β is given
by

lk(α,β) = 1

2
[ pα

∑
n=1

pβ

∑
m=1

Lαn βm
+Nins(α,β)] (A1)

where αn (βm) are the pα (pβ) symbols used to
write the orbital sequence α (β) of the period-pα
(period-pβ) orbit. Nins is the so-called graph of
insertion constructed as follows in the explicit case
of orbits (443) and (3’34).
These two orbits are made of three periodic

points each, namely

443→ 434→ 344

and

3′34→ 343′ → 43′3 ,

respectively. These six periodic points can be
ranked according to the multimodal order27,45 as

343′ ≺ 344 ≺ 434 ≺ 443 ≺ 43′3 ≺ 3′34

which provides the relative order of the periodic
points in the Poincaré section. This is the bot-
tom row of the graph of insertion. The top row is
obtained by a permutation between the periodic
point within a given order-reversing strip (labelled
with an odd integer) and a permutation between
the ith and the jth strips which are associated
with an odd element Lij of the linking matrix. In
the present case, the top row is

344 ≺ 343′ ≺ 434 ≺ 443 ≺ 43′3 ≺ 3′34 .

The top row is thus linked to the bottom row ac-
cording to a Bernoulli shift: for instance, point
3’34 of the top row is linked to point 343’ of the
bottom row. Crossings between the two orbits are
then counted (self-crossings are ignored). In the
graph of insertion Nins(3′34,443) (Fig. 18), five

crossings are counted. By definition, crossings in
the graph of insertion are always positive.43 The
linking number lk(3′34,443) is thus equal to
lk(3′34,443) = 1

2
[−3 − 4 − 12 − 8 − 8 + 5] = −15

(A2)
which is equal to the linking number counted in a
plane projection of the two orbits as shown in Fig.
16.

344 343’ 434 443 43’3 3’34

343’ 344 434 443 43’3 3’34

+

+
+

+ +

FIG. 18. Graph of insertion Nins(3
′34,443) between

the period-3 orbits (3’34) and (443). Five positive
crossings are counted. Self-crossings are ignored.
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(a) Cutting (b) Opening

(e) Squeezing (f) Gluing

^

(c) Pinching & stretching (d) Folding

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-1 -0,5 0 0,5 1

x

-1

-0,5

0

0,5

1

y

-1 0 1

x’
n

-1

0

1

y’
n

 .

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-0,500,5

 X

-0,8

-0,6

-0,4

-0,2

0

0,2

Y

0,1 0,15 0,2 0,25

Y
n

0,15

0,2

0,25

0,3

0,35

0,4

Y
n

  .

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-0,5 0 0,5 1 1,5

θ
n    

(π rad)

-0,5

0

0,5

1

1,5

θ
n

+
1

(01)

(10’)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-0,8-0,6-0,4-0,200,20,40,6

X

-0,6

-0,4

-0,2

0

0,2

Y

Negative

Positive

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



01 1010’ 0’1

01 1010’ 0’1

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-8 -4 0 4 8
x

-8

-4

0

4

8

y

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



2 4 6 8

x
n

0

0,5

1

1,5

z
n

-8 -6 -4 -2

x
n

0

0,5

1

1,5

2

2,5

z
n

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-8 -4 0 4 8

 x

-8

-4

0

4

8

y

µ = 1.201

µ = 1.213

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



4 33’

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



43 3’

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-0,5 0 0,5 1 1,5

θ
n

-0,5

0

0,5

1

1,5

θ
n

+
1

(3’34)

(443)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-8 -4 0 4 8
x

-8

-4

0

4

8

y

(443)

(3’34)

Negative

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



-8 -4 0 4 8
x

-8

-4

0

4

8

y

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4



344 343’ 434 443 43’3 3’34

343’ 344 434 443 43’3 3’34

+

+
+

+
+

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
25

92
4


	Manuscript File
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14a
	14b
	15
	16
	17
	18

