Quasi-stationary distribution and metastability for the stochastic Becker-Döring model
Résumé
We study a stochastic version of the classical Becker-Döring model, a well-known kinetic model for cluster formation that predicts the existence of a long-lived metastable state before a thermodynamically unfavorable nucleation occurs, leading to a phase transition phenomena. This continuous-time Markov chain model has received little attention, compared to its deterministic differential equations counterpart. We show that the stochastic formulation leads to a precise and quantitative description of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary distribution for the process conditionally on nucleation has not yet occurred.
Origine | Fichiers produits par l'(les) auteur(s) |
---|