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Abstract

We study a stochastic version of the classical Becker-Döring model, a well-known ki-
netic model for cluster formation that predicts the existence of a long-lived metastable
state before a thermodynamically unfavorable nucleation occurs, leading to a phase
transition phenomena. This continuous-time Markov chain model has received lit-
tle attention, compared to its deterministic differential equations counterpart. We
show that the stochastic formulation leads to a precise and quantitative description
of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary
distribution for the process conditionally on nucleation has not yet occurred.
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1 Introduction

The Becker-Döring model is a kinetic model for phase transition phenomenon repre-
sented schematically by the reaction network

∅ a1z
2

−−−⇀↽−−−
b2

C2 , and Ci
aiz−−−⇀↽−−−
bi+1

Ci+1 , i = 2, 3, . . . (1.1)

We assume an infinite reservoir of monomer, cluster of size 1, represented in (1.1) by
∅. The parameter z represents the fixed concentration of monomer and will play a key
role in the sequel. A cluster of size i ≥ 2, whose population is represented in (1.1) by Ci,
lengthen to give rise to a cluster of size i+ 1 at rate aiz or shorten to give rise a cluster
of size i− 1 at rate bi. The rate of apparition of a new cluster of size 2 is a1z

2 (without
loss of generality). All parameters are positives.

The Becker-Döring (BD) model goes back to the seminal work “Kinetic treatment of
nucleation in supersaturated vapors” in [1]. Since then, the model met very different
applications ranging from physics to biology. From the mathematical point of view, this
model received much more attention in the deterministic literature than the probabilistic
one. We refer to our review [4] for historical comments and detailed literature review
on theoretical results from the deterministic side. See also [5, 10] for recent results on
functional law of large number and central limit theorem.
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QSD and metastability for the Becker-Döring model

The model was initially designed to explain critical phase condensation phenomena
where macroscopic droplets self-assemble and segregate from an initially supersaturated
homogeneous mixture of particles, at a rate that is exponentially small in the excess of
particles. This led to important applications in kinetic nucleation theory [9, 5]. Mathe-
matical studies in the 90’s showed that (in the deterministic context), departing from
certain initial conditions, the size distribution of clusters reaches quickly a metastable
configuration composed of "small" clusters, and remains arbitrary close to that state
for a very large time, before it converges to the true stationary solution that leads to
"infinitely large" clusters (interpreted as droplets) [8, 9].

Our objective in this note is to re-visit the metastability theory in Becker-Döring
model in terms of quasi-stationary distribution (QSD) for the associated continuous-time
Markov chain. We prove existence, uniqueness and exponential ergodicity of a QSD for
the BD model conditioned on the event that large clusters have not yet appeared. We
prove furthermore that the convergence rate towards the QSD is faster than the rate of
apparition of (sufficiently) large clusters. Quantitative results are obtained thanks to a
surprisingly simple analytical formula for the QSD, that provides also an exact rate of
apparition of stable large clusters, consistently with the original heuristic development
of Becker and Döring.
Outline: Sec. 2: Construction of the BD model. Sec. 3: Collection of few (known)
results. Sec. 4: Exponential decay in total variation towards the stationary measure. Sec.
5: Similar result conditionally on no clusters larger than n are formed (QSD). Sec. 6:
Estimate on the time for the first cluster larger than n to appear. Sec. 7: Interpretation
of the QSD as a long-lived metastable state when n is the critical nucleus size.
Notation: We denote by Ni the set of non-negatives integers greater or equal to i, [[ ]]

for integers interval. For a set A, #A its cardinality, 1A the indicator function on it. 1
and 0 the constant functions equal to 1 and 0. For two numbers a, b, their minimum is
a ∧ b. For probability measures µ and ν on a countable state space S, the total variation
distance is

‖µ− ν‖ =
1

2

∑
x∈S
|µ(x)− µ(x)| = inf

γ∈Γ

∫
S×S

1x 6=y γ(dx, dy) ,

where Γ is the set of probability measures on S × S with marginals µ and ν. E (resp. Eµ)
denotes the expectation with respect to the usual probability measure P (resp. µ). We
set E = `1(N2,N0) the space of summable N0-valued sequences indexed by N2.

2 The model

The stochastic Becker-Döring (BD) process is a continuous-time Markov chain on the
countable state space E with infinitesimal generator A, given for all ψ with finite support
on E and C ∈ E , by

Aψ(C) =

+∞∑
i=1

(
aizCi[ψ(C + ∆i)− ψ(C)] + bi+1Ci+1[ψ(C −∆i)− ψ(C)]

)
with the convention C1 = z, ∆1 = e2 and ∆i = ei+1−ei, for each i ≥ 2, where {e2, e3, . . .}
denotes the canonical basis of E namely, ei,k = 1 if k = i and 0 otherwise.

We shall however use a different approach, modeling explicitly the size of each
individual cluster. On a sufficiently large probability space (Ω,F ,P), we introduce:
• N1, N2, . . . a denumerable family of independent Poisson point measure with intensity
the Lebesgue measure dsdu on R2

+.
• T1, T2, . . . a collection of random times such that the Tk − Tk−1 are independent expo-
nential random variable of parameter a1z

2, independent from the above Poisson point
measure as well, with T0 = 0.
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QSD and metastability for the Becker-Döring model

Let Πin a probability distribution on E and C(0) = (C2(0), C3(0), . . .) an E-valued random
variable distributed according to Πin. We denote by N in =

∑∞
i=2 Ci(0). By construction

N in <∞ almost surely (a.s.). Then, given C(0), we defineX1(0), X2(0), . . . a denumerable
collection of random variables on N2 such that, a.s. for each i ≥ 2,

Ci(0) = #
{
k ∈ [[1, N in]]

∣∣ Xk(0) = i
}
, (2.1)

and X in
k = 2 for all k > N in. Note this construction may be achieved by a bijective label-

ing function1. Finally, we consider the denumerable collection of stochastic processes
X1, X2, . . . on N1 solution of the stochastic differential equations, for all t ≥ 0 and k ≥ 1,

Xk(t) = Xk(0)+

∞∑
i=2

∫ t

0

∫
R+

1s>Tk−Nin1Xk(s−)=i

(
1u≤aiz−1aiz<u≤aiz+bi

)
Nk(ds, du) , (2.2)

where by convention Tk = 0 if k ≤ 0. The pathwise construction (2.2) is what we
call thereafter the particle description of the BD process. The interpretation is clear:
Xk(t) denotes the size of the cluster labeled by k at time t; for k ≤ N in, clusters are
initially "actives" while for k > N in clusters are initially “inactive” at state 2, and become
“activated” at the random arrival times Tk−N in . We ensured Xk(0) <∞ a.s. because the
Ci(0)’s are integer-valued random variables and belong to E , the sequence C(0) is a.s.
equally 0 from a certain range. Thus, local existence of càdlàg processes t 7→ Xk(t) on
N1 solution to (2.2) can classically be obtained inductively. It is clear from (2.2) that
each Xk evolves like a Birth-Death process for t > Tk (that will be detailed in the next
Sec. 3) and are mutually independent conditionally to their initial value. The Reuter’s
criterion gives a well-known necessary and sufficient condition so that each process Xk

is non-explosive, namely

∞∑
n=2

Qnz
n

( ∞∑
k=n

1

akQkzk+1

)
=∞ , with Q1 = 1 , Qi =

a1a2 · · · ai−1

b2 · · · bi
, i ≥ 2 . (H0)

It is now convenient to go back to the original description at stake. The number of
"active" clusters at time t ≥ 0 is given by the counting process

N(t) = N in +
∑
k≥1

1t≥Tk ,

while the number of cluster of size i ≥ 2 is

Ci(t) = # {k ∈ [[1, N(t)]] | Xk(t) = i} .

Now, noticing that Ci(t) =
∑N(t)
k=1 1i(Xk(t)), we can prove from standard stochastic

calculus that the process C given by C(t) = (C2(t), C3(t), . . .) for all t ≥ 0 has infinitesimal
generator A, and being non-explosive under condition (H0), it is the unique regular jump
homogeneous Markov chain on E with infinitesimal generator A and initial distribution
Πin, say the BD process. The proof is left to the reader and follows from classical
theory. In the sequel, C(t) always denote a BD process, and PΠin {C ∈ ·} its (unique)
finite dimensional probability distribution given that C(0) is distributed according to
Πin. We also set by convention PC = PδC for a deterministic C ∈ E and we recover
PΠin {·} =

∑
C∈E PC {·} Πin(C).

1A function (that exists) which associates, to each c ∈ E such that N =
∑∞

i=2 ci < ∞, a unique sequence
(x1, . . . , xN ) in N2 satisfying ci = # {k ∈ [[1, N ]] | xk = i}.
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QSD and metastability for the Becker-Döring model

3 Behaviour of one cluster

Let X the continuous-time Markov chain on N1 with transition rate matrix (qi,j)i,j≥1

whose nonzero entries are

qi,i+1 = aiz , qi,i−1 = bi , qi,i = −(aiz + bi) , i ≥ 2 . (3.1)

Remark that i = 1 is absorbing in agreement with (1.1): when a cluster size reaches 1, it
“leaves the system”. We shall assume standard hypotheses in the BD model [8, 9]:

lim
i→∞

bi/ai = zs > 0 , and lim
i→∞

bi+1/bi = 1 . (H1)

Hypothesis (H1) then guarantee (H0) for z 6= zs for the following reason. The conver-
gence of both series

∞∑
k=2

Qkz
k and

∞∑
k=2

1

akQkzk+1
,

depends on the value of z. Indeed, zs is the radius of convergence of the first series while
the second series converges for z > zs and diverges for z < zs. We have a dichotomy in
the long time behavior of X related to this value. The case z < zs is called the sub-critical
case, for which absorption at state 1 is certain and the expected time of absorption is
finite (also called ergodic absorption). The case z > zs is called the super-critical case
and absorption at 1 is not certain (also called transient absorption), and the probability
to be absorbed at 1 is, according to [6],

lim
t→∞

pi1(t) = J

∞∑
k=i

1

akQkzk+1
, with J =

( ∞∑
k=1

1

akQkzk+1

)−1

, (3.2)

where pij(t) = P {X(t) = j | X(0) = i} the probability transition function of X. The
limit case z = zs is somewhat technical and depends more deeply on the shape of the
coefficients. It is not considered in this note.

Following [8], a precise long time estimate on transient states can be obtained, under
the hypothesis (H1) and

bi+1

bi
− 1 = O(i−1) ,

ai+1

ai
− 1 = O(i−1) , ai = O(i) and lim

i→+∞
ai = +∞ . (H2)

In such a case, the infinite matrix (qi,j)i,j≥2 in (3.1) is self-adjoint on the Hilbert space H
consisting of the real sequences x = (x2, x3, . . .) whose norm is ‖x‖2H =

∑∞
i=2

x2
i

Qizi
. We

denote by 〈·, ·〉H the associated scalar product. It turns that (qi,j)i,j≥2 has a negative
maximum eigenvalue −λ, and the following estimate holds for any i ≥ 2,

‖(pij(t))j≥2‖H ≤ e−λt‖(pij(0))j≥2‖H =
e−λt√
Qizi

. (3.3)

We will also consider the chain X conditioned to remain below a given state n+ 1 ≥ 2.
We define the exit time

Tn = inf (t ≥ 0 | X(t) /∈ [[1, n]]) = inf (t ≥ 0 | X(t) ≥ n+ 1) . (3.4)

Let Y the birth-death process defined by Y (t) = X(t ∧ Tn). Hence, Y is absorbed either
in 1 or n + 1, and the probability to be absorbed at 1 (without visiting state n + 1) is,
according to [6, p.387],

lim
t→+∞

pni1(t) = Jn

n∑
k=i

1

akQkzk+1
, with Jn =

(
n∑
k=1

1

akQkzk+1

)−1

, (3.5)
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QSD and metastability for the Becker-Döring model

where pnij(t) = P (Y (t) = j | Y (0) = i) is the probability transition function of Y and
clearly

P {Tn > t | X(0) = i} ≥ lim
t→+∞

P {Tn > t | X(0) = i} = Jn

n∑
k=i

1

akQkzk+1
. (3.6)

Again, in [8], the author shows that the truncated matrix (qi,j)i,j=2,...,n is similar to a
symmetric one and then there exists γn > 0 such that for each i = 2, . . . , n,√√√√ n∑

j=2

pnij(t)
2

Qjzj
≤ e−γnt√

Qizi
. (3.7)

Note the probability to be absorbed in 1 before time t, pni1(t), is monotonously increasing
and limt→+∞ pni1(t) = 1− limt→+∞ pni(n+1)(t), thus we deduce that

n∑
j=2

P {Y (t) = j | Y (0) = i , Tn > t} =

∑n
j=2 p

n
ij(t)

1− pni(n+1)(t)
≤Mi,ne

−γnt ,

where the constant Mi,n, obtained thanks to (3.7), Cauchy-Schwarz inequality and (3.5),
is given by

Mi,n =

 1

Qizi

n∑
j=2

Qjz
j


1
2

1

Jn
∑n
k=i

1
akQkzk+1

.

We end this preliminary section, noticing that X(t) = Y (t) on {Tn > t}, with

P {X(t) = 1 | X(0) = i , Tn > t} ≥ 1−Mi,ne
−γnt ∧ 1 . (3.8)

4 Long-time behaviour of the BD process

In this section we are concerned with the long-time behaviour of the BD process.
Formally the measure Πeq, given by

Πeq(C) =

∞∏
i=2

e−c
eq
i

(ceqi )Ci

Ci!
, with ceqi = Qiz

i

for all C ∈ E , satisfies EΠeq [Aψ(C)] = 0 for any function ψ on E with finite support2.
Actually, Πeq satisfies the detailed balance condition aizCiΠeq(C) = bi+1(Ci+1 +1)Πeq(C+

∆i), for all i ≥ 1 and all C ∈ E (with the convention that C1 = z), as a consequence of
the relation aiQi = bi+1Qi+1. In the sub-critical case, Πeq is a probability measure on
E (indeed Πeq(NN2

0 ) = 1 with support in E because of EΠeq [
∑∞
i=2 Ci] =

∑∞
i=2 c

eq
i < ∞)

and we prove exponential ergodicity towards Πeq. In the super-critical case, Πeq is not a
limiting distribution (and

∑∞
i=2 c

eq
i =∞) but the measure defined by

Πstat(C) =

∞∏
i=2

e−fi
(fi)

Ci

Ci!
, with fi = JQiz

i
∞∑
k=i

1

akQkzk
, (4.1)

for all C ∈ E , where J is given in (3.2), characterizes the long-time behaviour of any
finite-number of marginals. Now on, we note f = (fi)i≥2, with fi defined in (4.1).

2In the sequel C in expectation formula always refers to the free variable of integration.
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QSD and metastability for the Becker-Döring model

Theorem 4.1. Under hypotheses (H1) and (H2). Let Πin a probability distribution on E
such that

EΠin

[
〈C,
√
Q〉H

]
<∞ , (4.2)

where
√
Q = (

√
Qizi)i≥2. With λ > 0 introduced in Sec. 3, see (3.3), we have:

• In the sub-critical case (z < zs), for all t ≥ 0,

‖PΠin {C(t) ∈ ·} −Πeq‖ ≤ Rine−λt ,

with Rin = K(EΠin

[
〈C,
√
Q〉H

]
+ EΠeq

[〈
C,
√
Q
〉
H

]
) and K = (

∑∞
k=2 c

eq
i )

1
2 ;

• In the super-critical case (z > zs), for all t ≥ 0, and for all n ≥ 2,

‖PΠin {(C2(t), . . . , Cn(t)) ∈ ·} −Πstat(· ×
∞∏

k=n+1

N0)‖ ≤ Rin
n e
−λt ,

with Rin
n = KnEΠin

[
〈C,
√
Q〉H

]
+ ‖f‖H and Kn = (

∑n
k=2 c

eq
i )

1
2 .

Not least, remark that EΠeq

[〈
C,
√
Q
〉
H

]
=
∑∞
i=2

√
Qizi <∞ for z < zs and that f ∈ H

for z > zs (see [8]). In the sequel, Kn and K always refer to the constants given above.
The proof is based on a coupling (described below) to a distribution starting from 0, so
that the control of the initial particles in C(0) are a key point.

Lemma 4.2. Under the hypothesis of Theorem 4.1. Let the collection of processes
X1, X2, . . . being a particle description of the BD process C. We have, for each n ≥ 2,

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) /∈ [[2, n]]

}
≥ 1−KnEΠin

[
〈C,
√
Q〉H

]
e−λt .

In particular, for the sub-critical case,

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) = 1

}
≥ 1−KEΠin

[
〈C,
√
Q〉H

]
e−λt .

Proof. Fix n ≥ 2. Let C ∈ E deterministic, define N =
∑∞
i=2 Ci and (i1, . . . , iN ) ∈ NN2

given by the labeling function, e.g. C(0) = C and X1(0) = i1, . . . XN (0) = iN satisfy
relation (2.1). Since each processes X1, . . . XN are independent copy of the chain X

given in Sec. 3, conditionally on their initial condition, we have

PC {∀k ∈ [[1, N ]] , Xk(t) /∈ [[2, n]]} =

N∏
k=1

P {X(t) /∈ [[2, n]] | X(0) = ik} , (4.3)

for all t ≥ 0. Thanks to Cauchy–Schwarz inequality and (3.3),

P {X(t) ∈ [[2, n]] | X(0) = i} =

n∑
j=2

pij(t) ≤

(
1√
Qizi

)
Kne

−λt ∧ 1 .

Hence, with (4.3), we have

PC {∀k ∈ [[1, N ]] , Xk(t) /∈ [[2, n]]} ≥ 1−Kne
−λt

N∑
k=1

1√
Qikz

ik
,

remarking that
∏N
i=1(1− xi ∧ 1) ≥ 1−

∑N
i=1 xi for any non-negatives x1, . . . , xN . Finally,

we conclude that

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) /∈ [[2, n]]

}
≥ 1−Kne

−λt
∑
C∈E

N∑
k=1

1√
Qikz

ik
Πin(C)

= 1−Kne
−λtEΠin

[ ∞∑
i=2

#
{
k ∈ [[1, N in]]

∣∣ Xk(0) = i
}√

Qizi

]
,
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QSD and metastability for the Becker-Döring model

and the proof ends.

We now show, by a coupling argument, that any solution satisfying (4.2) is in total
variation exponentially close to the solution that starts with no cluster, namely the
deterministic initial condition at 0.

Lemma 4.3. Under the hypothesis of Theorem 4.1. For all t ≥ 0, we have

• In the subcritical case (z < zs),

‖PΠin {C(t) ∈ ·} −P0 {C(t) ∈ ·} ‖ ≤ KEΠin

[
〈C,
√
Q〉H

]
e−λt ;

• In the super-critical case (z > zs), for all n ≥ 2,

‖PΠin {(C2(t), . . . , Cn(t)) ∈ ·} −P0 {(C2(t), . . . , Cn(t)) ∈ ·} ‖ ≤ KnEΠin

[
〈C,
√

Q〉H
]
e−λt .

Proof. Let the collection of processes X1, X2, . . . (resp. Y1, Y2, . . .) being a particle de-
scription of the BD process that starts from the initial distribution Πin (resp. from δ0).
We couple the processes X1, X2, . . . to the processes Y1, Y2, . . . such that all new particle
“activates” simultaneously and evolves with the same jumps. Namely, Yk(t) = Xk+N in(t)

for all k ≥ 1 and all t ≥ 0, where N in is distributed according to Πin.
In the sub-critical case the proof readily follows from Lemma 4.2 and the definition

of the total variation since

‖PΠin {C(t) ∈ ·} −P0 {C(t) ∈ ·} ‖ ≤ 1−PΠin

{
∀k ∈ [[1, N in]], Xk(t) = 1

}
,

because all "active" clusters are equal whenever all initial clusters from Πin have been
absorbed. A very similar argument holds in the super-critical case.

Proof of Theorem 4.1. We consider first the sub-critical case. As said, condition (4.2) is
satisfied for Πeq since EΠeq

[
〈C,
√
Q〉H

]
< ∞, thus Lemma 4.3 applies for Πeq as initial

distribution. Because the constructed BD process is regular and Πeq is a stationary
distribution (i.e. PΠeq {C(t) ∈ ·} = Πeq), we deduce

‖P0 {C(t) ∈ ·} −Πeq‖ ≤ KEΠeq

[
〈C,
√
Q〉H

]
e−λt .

Going back to any Πin satisfying condition (4.2), applying Lemma 4.3 again and the
triangular inequality yield the desired result.

Consider now the super-critical case. Πstat is a product of Poisson distribution P(fi)

on N0 with mean fi. According to a classical result on Markov population processes, see
e.g. [7, Sec. 4], the law P0 {C(t) ∈ ·} is also a product of Poisson distribution P(ci(t))

on N0 with mean ci(t) such that c(t) = (c2(t), c3(t), . . .) solves the deterministic (linear)
Becker-Döring equations namely, c(t) = Ac(t) + a1z

2e2 where A = (qj,i)i,j≥2 the matrix
with entries in (3.1), and initial condition c(0) = 0. Thanks to [8, Theorem III], we have

‖c(t)− f‖H ≤ ‖f‖He−λt , (4.4)

and we easily obtain that ‖P(ci(t))−P(fi)‖ ≤ |ci(t)−fi|. The latter, with independence of
the marginals of Πstat and of P0 {C(t) ∈ ·}, estimate (4.4) and Cauchy-Schwarz inequality,
entail

‖P0 {(C2(t), . . . , Cn(t)) ∈ ·} −Πstat(· ×
∞∏

k=n+1

N0)‖ ≤
n∑
i=2

|di(t)− fi| ≤ Kn‖f‖He−λt .

We conclude again by Lemma 4.3 and the triangular inequality.
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QSD and metastability for the Becker-Döring model

5 A quasi-stationary distribution

Let En = {C ∈ E | Ci = 0 , i ≥ n+ 1}. We define the first exit time from En,

τn = inf {t ≥ 0 | C(t) /∈ En} . (5.1)

Remark that PΠin {τn > t} > 0 for all times t > 0 and for any Πin supported on En. We
will give in the next Sec. 6 a tight lower bound on that probability in the super-critical
case. In this section, we prove exponential ergodicity towards a unique QSD for the BD
process conditioned to τn > t. It is remarkable that we have at hand an explicit QSD,
given, for all C ∈ En, by

Πqsd
n (C) =

n∏
i=2

(fni )Ci

Ci!
e−f

n
i , with fni (z) = JnQiz

i
n∑
k=i

1

akQkzk+1
, (5.2)

for i = 2, . . . , n and Jn defined in (3.5).

Proposition 5.1. Under assumption (H0). The distribution Πqsd
n is a quasi-stationary

distribution for the BD process conditioned to stay on En namely,

PΠqsd
n
{C(t) ∈ · | t < τn} = Πqsd

n and PΠqsd
n
{t < τn} = exp (−Jnt) .

Proof. Recall assumption (H0) ensures the BD process is regular. Fix n ≥ 2. Let the
semi-group Pnt ψ(C) = EC [ψ(C(t))1t<τn ] for t ≥ 0 (i.e. C(0) is distributed according to
δC), whose generator is

Anψ(C) =

n−1∑
i=1

(
aizCi[ψ(C + ∆i)− ψ(c)] + bi+1Ci+1[ψ(C −∆i)− ψ(C)]

)
− anzCnψ(C) ,

for all C ∈ En (recall C1 = z) and bounded function ψ on En. Denote by A∗n the dual
operator for the generator An. Some calculations show that the distribution (5.2)
satisfies, for any C ∈ En,

A∗nΠqsd
n (C) = Πqsd

n (C)

{
b2f

n
2 − a1z

2 +

n∑
i=2

Ci
fni

(
ai−1zf

n
i−1 − (aiz + bi)f

n
i + 1i<nbi+1f

n
i+1

)}
,

with the convention fn1 = z. Since the fni given by (5.2) verifies aizfni −1i<nbi+1f
n
i+1 = Jn

for all i ∈ [[1, n]], all terms but the first cancel in the above expression, so that we obtain
A∗nΠqsd

n = −JnΠqsd
n which is the classical spectral criteria of QSD, noticing that Jn ≤ a1z

2,
see [2, Thm 4.4].

The next theorem shows the QSD is a quasi-limiting distribution for a wide range
of initial distribution supported on En, with an exponential rate of convergence and an
explicit (non-uniform) pre-factor.

Theorem 5.2. Under assumption (H0). Let Πin a probability distribution on En such
that EΠin [

∑∞
i=2 Ci] <∞. We have for all t ≥ 0,

‖PΠin {C(t) ∈ · | τn > t} −Πqsd
n ‖ ≤ Kn

(
H in
n

PΠin {τn > t}
+ eJntHqsd

n

)
e−γnt ,

where τn is defined in (5.1), Jn in (3.5), Kn in Theorem (4.1), γn in (3.7),

H in
n =

n∑
i=2

√
Qizi

EΠin [Ci]

fni
and Hqsd

n =

n∑
i=2

√
Qizi .
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It is clear that H in
n is finite because EΠin [

∑∞
i=2 Ci] is. The proof of Theorem 5.2 is

similar to the proof of Theorem 4.1 and consists in a coupling argument together with
a control of the initial clusters in Πin. We start by the later, which is the analogous of
Lemma 4.2.

Lemma 5.3. Under the hypothesis of Theorem 5.2. Let the collection of processes
X1, X2, . . . being a particle description of the BD process C. We have

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) = 1

∣∣ τn > t
}
≥ 1− e−γnt KnH

in
n

PΠin {t < τn}
.

Proof. We start by observing that the following relation holds true,

τn = min(τ0
n, T

1
n , . . . , T

N in

n ) , (5.3)

where T kn = inf {t > 0 | Xk(t) ≥ n+ 1} for k = 1, . . . , N in and

τ0
n = inf

{
t ≥ 0

∣∣ ∃k > N in , Xk(t) ≥ n+ 1
}
. (5.4)

Let C(0) = C ∈ En deterministic, define N =
∑∞
i=2 Ci and (i1, . . . , iN ) ∈ [[2, n]]N given

by labeling function such that Ci = # {k ∈ [[1, N ]] | ik = i}. Conditionally on their initial
condition, all clusters Xk(t) (starting at ik) are independent from each other, thus the
event

At = {∀k ∈ [[1, N ]] , Xk(t) = 1} (5.5)

is independent of (Xk)k>N and thus independent of τ0
n. Then,

PC {At | τn > t} = PC
{
At
∣∣ min(T 1

n , . . . , T
N
n ) > t

}
.

Still by independence of the clusters from each other, we claim that

PC
{
At
∣∣ min(T 1

n , . . . , T
N
n ) > t

}
=

N∏
k=1

P {X(t) = 1 | X(0) = ik , Tn > t} , (5.6)

where X is defined in Sec. 3 and Tn in (3.4). This equation is clear for N = 1, and is
easily proved by induction. We do it only for N = 2, for the sake of simplicity. Let i1,
i2 ∈ [[2, n]]. By definition of At, independence of the X1 and X2 conditionally on their
initial condition, and since they are copy of X in Sec. 3,

PC
{
At
∣∣ min(T 1

n , T
2
n) > t

}
=

2∏
k=1

P
{
Xk(t) = 1 , T kn > t , Xk(0) = ik

}
P {T kn > t , Xk(0) = ik}

=

2∏
k=1

P {X(t) = 1 | X(0) = ik , Tn > t} .

This proves the desired result. Thus, going back to (5.6) and thanks to (3.8) we have

PC {At | τn > t} ≥
N∏
k=1

(
1−Mik,ne

−γnt ∧ 1
)
≥ 1− e−γnt

N∑
k=1

Mik,n .

Finally, we obtain

PΠin {At | τn > t} =
∑
C∈En

PC {At | τn > t} PC {τn > t}
PΠin {τn > t}

Πin(C)

≥ 1− e−γnt
∑
C∈En

N∑
k=1

Mik,n
PC {τn > t}
PΠin {τn > t}

Πin(C) ≥ 1− e−γnt KnH
in
n

PΠin {τn > t}
,
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where in the second line, N and (ik)k=1..N are given by the labeling function for each
C ∈ En, and using that PC {τn > t} ≤ 1 in the last inequality. Remark the expression of
H in
n is obtained thanks to the definition of Mi,n in (3.8) and fni in (5.2).

Proof of the Theorem 5.2. Let the collection of processes X1, X2, . . . (resp. Y1, Y2, . . .)
being a particle description of the BD process that starts from the initial distribution Πin

(resp. from δ0). We couple the processes X1, X2, . . . to the processes Y1, Y2, . . . as in the
proof of Theorem 5.2, namely, Yk(t) = Xk+N in(t) for all k ≥ 1 and all t ≥ 0, where N in is
distributed according to Πin.

To avoid notation confusion, we write τXn and τYn the first exit time from En for the
collection of processes {Xk} and {Yk}, respectively. We define τ0,X

n and τ0,Y
n , respectively

to the processes {Xk} and {Yk} likewise τ0
n in (5.4). Due to the coupling between the

{Xk} and {Yk}, we have

τ0,Y
n = τYn = inf {t ≥ 0 | ∃k > 0 , Yk(t) ≥ n+ 1}

= inf
{
t ≥ 0

∣∣ ∃k > N in , Xk(t) ≥ n+ 1
}

= τ0,X
n . (5.7)

Remark that each Yk, for k ≥ 1, is independent of Xi for i ≤ N in, thus independent of
T 1
n , . . . , T

N in

n the exit times arising in (5.3). Hence, by (5.3) and (5.7), the laws of the
collection of processes {Yk} conditioned to τYn > t equals to the laws of the collection
of processes {Yk} conditioned to τXn > t. Also, we have, for any i ≥ 2 and t > 0,
# {k | Xk(t) = i} = # {k | Yk(t) = i} on the event At, given in (5.5), since all initial
particles being absorbed. Finally, we deduce that

‖PΠin {C(t) ∈ · | τn > t} −P0 {C(t) ∈ · | τn > t} ‖
≤ P

{
∃i ≥ 2, # {k | Xk(t) = i} 6= # {k | Yk(t) = i}

∣∣ τXn > t
}
≤ PΠin

{
Act
∣∣ t < τXn

}
.

The latter, with Lemma 5.3, entails

‖PΠin {C(t) ∈ · | τn > t} −P0 {C(t) ∈ · | τn > t} ‖ ≤ e−γnt KnH
in
n

PΠin {t < τn}
. (5.8)

Then, applying estimate (5.8) with the initial distribution Πqsd
n since EΠqsd

n
[
∑∞
i=2 Ci] =∑n

i=2 f
n
i <∞ and by Proposition 5.1, we deduce

‖Πqsd
n −P0 {C(t) ∈ · | t < τn} ‖ ≤ e−γntKne

JntHqsd
n .

We end the proof by triangular inequality.

6 Estimates on τn and the largest cluster

In this section we consider the super-critical case z > zs. The analysis of the τn in
(5.1) leads off the simple observation

τn > t⇔ ∀s ≤ t, max
1≤k≤N(s)

Xk(s) ≤ n ,

where X1, X2, . . . is the particle description of the BD process. We prove

Theorem 6.1. Under assumption (H0). Let z > zs and Πin a probability distribution on
En such that EΠin [

∑∞
i=2 Ci] <∞. We have

PΠin {τn > t} ≥ Gin
n e
−Jnt ,

where

Gin
n = EΠin

[
n∏
i=1

(
fni
Qizi

)Ci]
≥ 1−

n∑
i=2

EΠin [Ci] (1− fni
Qizi

) .
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In fact, as in the coupling strategy, (5.3) provides a useful understanding of the
statistics of τn by decomposing between the initial cluster from the ones that will appear
at later times. We start with the statistics of the later, namely of τ0

n. The next lemma
clearly applies for the initial distribution Πin = δ0 but is more general.

Lemma 6.2. Under assumption (H0) and z > zs. For any probability distribution Πin on
En such that for all i ∈ [[2, n]] and k ∈ N,

PΠin

 ∑
i≤j≤n

Cj ≥ k

 ≤ PΠqsd

 ∑
i≤j≤n

Cj ≥ k

 , (6.1)

we have
PΠin {τn > t} ≥ e−Jnt .

Proof of Lemma 6.2. It is classical that condition (6.1) ensures there exists randoms Cin

and Cqsd distributed according to Πin and Πqsd, respectively, such that for each i ∈ [[2, n]],∑
i≤j≤n

C in
j ≤

∑
i≤j≤n

Cqsd
j , a.s.

see e.g. [3, Sec. 4.12]. Then, we may construct the collection of processes X1, X2, . . .

(resp. Y1, Y2, . . .) as a particle description of the BD process associated to Cin (resp. to
Cqsd) such that, a.s., for all i ≥ 1, Xi(0) ≤ Yi(0). A standard coupling between two copies
of the chain X from Sec. 3 consists in having the same jumps in the two copies as soon
as they are equal. Such coupling applied to each couple (Xi, Yi) then ensures that, for
all i ≥ 1 and t ≥ 0, we have Xi(t) ≤ Yi(t) a.s. In particular,

inf{t > 0 | max
k

Xk(t) > n} ≥ inf{t > 0 | max
k

Yk(t) > n} a.s.

thus, with Proposition 5.1,

PΠin {τn > t} ≥ PΠqsd {τn > t} = e−Jnt .

Proof of Theorem 6.1. Let n ≥ 2 and i ∈ [[2, n]]. Define gn,i(t) = P {Tn > t | X(0) = i}
where Tn and X are given in Sec. 3. Thanks to (3.6), we have

gn,i(t) ≥ lim
t→+∞

gn,i(t) = Jn

n∑
k=i

1

akQkzk+1
=

fni
Qizi

. (6.2)

Let ψn(t, x) = 1 if max0≤τ≤t x(τ) ≤ n and 0 otherwise. We have

PΠin {τn > t} =
∑
C∈En

PC


N(t)∏
i=1

ψn(t,Xi) = 1

Πin(C) ,

where X1, X2, . . . the particle description of the BD process C (starting at δC). By
independence of the particles conditionally to their initial condition,

PC


N(t)∏
i=1

ψn(t,Xi) = 1

 = PC


N(t)∏

i=N in+1

ψn(t,Xi) = 1

PC


N in∏
i=1

ψn(t,Xi) = 1


= P0 {τn > t}

N∏
k=1

gn,ik(t) , (6.3)

where again, N and (ik)k=1..N are given by the labeling function associated to C ∈
En. Combining relations (6.2) and (6.3) with Lemma 6.2 and summing over all initial
conditions ends the proof.
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7 Metastability close to zs

In this section we assume additionally to (H1) and (H2), to fit with [8, 9], that

A′ < ai < Aiα ,
bi+1

ai+1
+
κ

iν
≤ bi
ai

and zse
Gi−γ ≤ bi

ai
≤ zseG

′i−γ
′

, (H3)

for all i ≥ 2, where α, γ ∈ (0, 1), γ′, ν > 0, κ, A′, A, G and G′ positives. We also use the
terminology of [9] namely a quantity q(z) of z is: exponentially small if q(z)/(z − zs)m is
bounded for all m > 0 as z%zs (z converges to zs and z > zs); and at most algebraically
large if (z − zs)m0q(z) is bounded for some m0 > 0 as z%zs.

Assumption (H3) ensures the existence of a unique n∗ (depending on z) such that
bn∗+1/an∗+1 < z < bn∗/an∗ . The size n∗ is interpreted as the nucleus size: for a cluster
X(t) ≤ n∗, X(t) tends to shorten, while for X(t) > n∗, it tends to grow. With assumption
(H3), n∗ →∞ as z % zs. In [8, 9], n∗ is proved to be at most algebraically large. Moreover,
the time scale 1/γn∗ (in Theorem (5.2)) is also at most algebraically large, and Jn∗ (in
Theorem 6.1) is exponentially small. We now choose an initial distribution Πin with
support on Ej , with j independent of z (no generality is claimed here). We have

PΠin {τn∗ > t} ≥

(
1−

j∑
i=2

EΠin [Ci] (1− fn
∗

i

Qizi
)

)
e−Jn∗ t , (7.1)

which is arbitrary close to one for times t � 1/Jn∗ as fn
∗

i /(Qiz
i) → 1 when z % zs.

Moreover, we have

‖PΠin {C(t) ∈ · | τn∗ > t} −Πqsd
n ‖ ≤ (

Hin
j

Gin
j

+Hqsd
n∗ )Kn∗e

Jn∗ t−γn∗ t , (7.2)

which is arbitrary small for times 1/γn∗ � t � 1/Jn∗ . Indeed, note that aiQizi is
decreasing up to the size n∗, thus K2

n∗ ≤ a1z
A′ n

∗. Hence, Kn∗ as well as Hqsd
n∗ are at most

algebraically large. Equations (7.1)-(7.2) show the QSD is indeed a metastable state.
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