Toward a Curry-Howard Equivalence for Linear, Reversible Computation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Toward a Curry-Howard Equivalence for Linear, Reversible Computation

Résumé

In this paper, we present a linear and reversible language with inductive and coinductive types, together with a Curry-Howard correspondence with the logic µMALL: linear logic extended with least and greatest xed points allowing inductive and coinductive statements. Linear, reversible computation makes an important sub-class of quantum computation without measurement. In the latter, the notion of purely quantum recursive type is not yet well understood. Moreover, models for reasoning about quantum algorithms only provide complex types for classical datatypes: there are usually no types for purely quantum objects beside tensors of quantum bits. This work is a rst step towards understanding purely quantum recursive types.
Fichier principal
Vignette du fichier
main.pdf (526.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03103455 , version 1 (08-01-2021)

Identifiants

Citer

Kostia Chardonnet, Alexis Saurin, Benoît Valiron. Toward a Curry-Howard Equivalence for Linear, Reversible Computation. RC 2020 - 12th international conference on Reversible Computation, Jul 2020, Oslo / Virtual, Norway. pp.144-152, ⟨10.1007/978-3-030-52482-1_8⟩. ⟨hal-03103455⟩
141 Consultations
169 Téléchargements

Altmetric

Partager

More