
HAL Id: hal-03103455
https://hal.science/hal-03103455v1

Submitted on 8 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Curry-Howard Equivalence for Linear,
Reversible Computation

Kostia Chardonnet, Alexis Saurin, Benoît Valiron

To cite this version:
Kostia Chardonnet, Alexis Saurin, Benoît Valiron. Toward a Curry-Howard Equivalence for Linear,
Reversible Computation. RC 2020 - 12th international conference on Reversible Computation, Jul
2020, Oslo / Virtual, Norway. pp.144-152, �10.1007/978-3-030-52482-1_8�. �hal-03103455�

https://hal.science/hal-03103455v1
https://hal.archives-ouvertes.fr

Toward a Curry-Howard Equivalence for
Linear, Reversible Computation

Work-in-progress

Kostia Chardonnet1,2,3, Alexis Saurin2,3, and Benoît Valiron1,2

1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire de Recherche en Informatique,
91405, Orsay, France.

2 Université de Paris, IRIF, CNRS, 75013, Paris, France.
3 Équipe πr2, Inria

Abstract. In this paper, we present a linear and reversible language with in-
ductive and coinductive types, together with a Curry-Howard correspondence
with the logic µMALL: linear logic extended with least and greatest �xed points
allowing inductive and coinductive statements. Linear, reversible computation
makes an important sub-class of quantum computation without measurement.
In the latter, the notion of purely quantum recursive type is not yet well un-
derstood. Moreover, models for reasoning about quantum algorithms only pro-
vide complex types for classical datatypes: there are usually no types for purely
quantum objects beside tensors of quantum bits. This work is a �rst step towards
understanding purely quantum recursive types.

Keywords: Reversible computation · Linear logic · Curry-Howard

1 Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s

s....
A→ B

t....
A

B

Fig. 1. Modus-Ponens

ofA→ B and a proof t ofA. With the logical rule Modus-
Ponens one can construct a proof of B: Figure 1 features a
graphical presentation of the corresponding proof. Hori-
zontal lines stand for deduction steps —they separate con-
clusions (below) and hypotheses (above). These deduction
steps can be stacked vertically up to axioms in order to
describe complete proofs. In Figure 1 the proofs of A and
A→ B are symbolized with vertical ellipses. The ellipsis
annotated with s indicates that s is a complete proof of
A→ B while t stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [4,8]. In this gen-
eral framework, types correspond to formulas and programs to proofs, while program
evaluation is mirrored with proof simpli�cation (the so-called cut-elimination). The
Curry-Howard correspondence formalizes the fact that the proof s of A → B can
be regarded as a function —parametrized by an argument of type A— that produces a
proof ofB whenever it is fed with a proof ofA. Therefore, the computational interpre-
tation of Modus-Ponens corresponds to the application of an argument (i.e. t) of type

2 Kostia Chardonnet, Alexis Saurin, and Benoît Valiron

A to a function (i.e. s) of type A→ B. When computing the corresponding program,
one substitutes the parameter of the function with t and get a result of type B. On the
logical side, this corresponds to substituting every axiom introducing A in the proof
s with the full proof t of A. This yields a direct proof of B without any invocation of
the “lemma” A→ B.

Paving the way toward the veri�cation of critical softwares, the Curry-Howard
correspondence provides a versatile framework. It has been used to mirror �rst and
second-order logics with dependent-type systems [3,10], separation logics with mem-
ory-aware type systems [13,9], resource-sensitive logics with di�erential privacy [6],
logics with monads with reasoning on side-e�ects [17,11], etc.

This paper is concerned with the case of reversible computation, a sub-class of
pure quantum computation. In general quantum computation, one has access to a co-
processor holding a “quantum” memory. This memory consists of “quantum” bits hav-
ing a peculiar property: their state cannot be duplicated, and the operations one can
perform on them are unitary, reversible operations. The co-processor comes with an
interface to which one can send instructions to allocate, update or read quantum reg-
isters. Quantum memories can be used to solve classical problems faster than with
purely conventional means. Quantum programming languages are nowadays perva-
sive [5] and several formal approaches based on logical systems have been proposed
to relate to this model of computation [16,12,14]. However, all of these languages rely
on a purely classical control-�ow: quantum computation is reduced to describing a list
of instructions —a quantum circuit— to be sent to the co-processor. In particular, in
this model operations performed on the quantum memory only act on quantum bits
and tensors thereof, while the classical computer enjoys the manipulation of any kind
of data with the help of rich type systems.

This extended abstract aims at proposing a type system featuring inductive and
coinductive types for a purely reversible language, �rst step towards a rich quantum
type system. We base our study on the approach presented in [15]. In this model, re-
versible computation is restricted to two main types: the tensor, written a⊗ b and the
co-product, written a⊕ b. The former corresponds to the type of all pairs of elements
of type a and elements of type b, while the latter represents the disjoint union of all
elements of type a and elements of type b. For instance, a bit can be typed with 1⊕1,
where 1 is a type with only one element. The language in [15] o�ers the possibility to
code isos —reversible maps— with pattern matching. An iso is for instance the swap
operation, typed with a⊗ b↔ b⊗ a. The language also permits higher-order opera-
tions on isos, so that an iso can be parametrized by another iso, and is extended with
lists (denoted with [a]). For instance, one can type a map operation acting on all the
elements of a list with (a ↔ b) → ([a] ↔ [b]). However, if [15] hints at an extension
toward pure quantum computation, the type system is not formally connected to any
logical system.

The main contribution of this work is a Curry-Howard correspondence for a purely
reversible typed language in the style of [15]. We capitalize on the logic µMALL [2,1]:
an extension of the additive and multiplicative fragment of linear logic with least and
greatest �xed points allowing inductive and coinductive statements. This logic con-

Toward a Curry-Howard Equivalence for Linear, Reversible Computation 3

A ` A id
Γ1, A ` ∆1 Γ2 ` ∆2, A

Γ1, Γ2 ` ∆1,∆2
cut

∆ ` A
∆,1 ` A 1L

` 1 1R

∆,A,B ` C
∆,A⊗B ` C ⊗L

∆ ` A Γ ` B
∆,Γ ` A⊗B ⊗R

∆,A ` C ∆,B ` C
∆,A⊕B ` C ⊕L

∆ ` Ai

∆ ` A1 ⊕A2
⊕i

R i ∈ {1, 2}
A[X ← µX.A] ` B

µX.A ` B
µL

A ` B[X ← µX.B]

A ` µX.B
µR

A[X ← νX.A] ` B
νX.A ` B

νL
A ` B[X ← νX.B]

A ` νX.B
νR

Fig. 2. Rules for µMALL.

tains both a tensor and a co-product, and its strict linearity makes it a good �t for a
reversible type system.

2 Background on µMALL

The logic µMALL [2,1] is an extension of the additive and multiplicative fragment of
linear logic [7]. The syntax of linear logic is extended with the formulas µX.A and
its dual νX.A (where X is a type variable occuring in A), which can be understood
at the least and greatest �xed points of the operator X 7→ A. These permit inductive
and coinductive statements. We are only interested in a fragment of µMALL which
contains the tensor, the plus, the unit and theµ and ν connectives. Note that our system
only deals with closed formulas. Our syntax of formulas is A,B ::= 1 | X | A⊗
B | A ⊕ B | µX.A | νX.A. The derivation rules are shown in Figure 2. They
de�ned a binary relation ∆ ` Γ on set of formulas de�ned inductively. For each rule
the assumptions are above the line while the conclusion is under. In the rules, the
comma stands for the disjoint union: observe that each formula has to be used exactly
once and cannot be duplicated or erased. In µMALL one can for instance de�ne the
type of natural numbers as µX.1 ⊕X , of lists of type A as µX.1 ⊕ (A ⊗X) and of
streams of type A as νX.A⊗X .

We consider proofs to be potentially non-well-founded derivation trees: they are
not necessarily �nite as we can for instance consider the formula µX.X and apply
the rule µR an in�nite number of times. Among non well-founded proof-objects we
distinguish the regular derivation trees that we call circular pre-proofs. These trees
can then be represented in a compact manner, see Figure 3. One problem with such
a proof-system is to determine whether or not in�nite derivations are indeed proofs.
Indeed, if every in�nite derivation is accepted as a proof, it would be possible to prove
any formula F, as shown in Figure 4.

To answer this problem, µMALL comes with a validity criterion for derivations. It
roughly says that a derivation is valid if, in every in�nite branch of the derivation, there
exists an in�nite number of rules µL or an in�nite number of rules νR. The intuition

4 Kostia Chardonnet, Alexis Saurin, and Benoît Valiron

...
µR

` µX.X
µR

` µX.X

` µX.X

µR
` µX.X

Fig. 3. Circular representation of proofs.

...
µR

` µX.X

...
µL

µX.X ` F
cut

` F

Fig. 4. Degenerated proof.

is that since µX.A formulas represent least �xed points, their objects are �nite. An
in�nite number of rule µR would mean producing an in�nite object, which is not
possible. On the other hand, we can explore an arbitrarily large object as input with
the rule µL. For the other case, since νX.A formulas represent greatest �xed points,
their object are in�nite. We therefore want to ensure that we can produce in�nite
objects: hence the in�nite number of rules νR. This criterion can be understood in a
more operational way as a requirement for productivity.

3 Our language

Our language is based on the one presented in [15]. We build on the reversible part of
the paper by extending the language to support both a more general rewriting system
and inductive and coinductive types. The language is de�ned by layers. Terms and
types are presented in Table 2, while typing derivations, based on µMALL, can be
found in Tables 3 and 4. The language consists of the following pieces.
Basic type. They are �rst-order and typed with base types. The constructors injl
and injr represent the choice between either the left or right-hand side of a type of
the form A⊕B; the constructor 〈, 〉 builds pairs of elements (with the corresponding
type constructor⊗); fold and pack respectively represent inductive and coinductive
structure of for the types µX.A and νX.A. A value can serve both as a result and as a
pattern in the clause of an iso. Generalized patterns are used as special patterns: vg : A
can match any value of type A. Terms are expressions at “surface-level”: applying an
iso always gives a term, whereas it is an expression only when the argument is a
generalized pattern.
First-order isos. An iso of type α acts on terms of base types. An iso is a function of
type A ↔ B, de�ned as a set of clauses of the form {e1 ↔ e′1 | . . . | en ↔ e′n}.
The tokens ei and e′i in the clauses are expressions. Compared to the original language
in [15], we allow general expressions both on the left and on the right of a clause. In
order to apply an iso to a term, the iso must be of type A ↔ B and the term of type
A. In the typing rules of isos, the OD predicate (taken from [15] and not described
in this paper) syntactically enforces the exhaustivity and non-overlapping conditions
that the left-hand-side and right-hand-side of clauses should satisfy. Exhaustivity for
an iso {e1 ↔ e′1 | . . . | en ↔ e′n} of type A ↔ B means that the expressions
on the left (resp. on the right) of the clauses describe all possible values for the type
A (resp. the type B). Non-overlapping means that two expressions cannot match the
same value. For instance, the left and right injections injl e and injr e

′ are non-
overlapping while a pattern vg is always exhaustive.

Toward a Curry-Howard Equivalence for Linear, Reversible Computation 5

(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A | νX.A
(Isos, �rst-order) α ::= A↔ B

(Isos, higher-order) T ::= α1 → · · · → αn → α

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉 |
fold v | pack v

(Generalized pattern) vg ::= () | x | 〈vg, vg〉 | ω vg | let vg = vg in vg |
fold vg | pack vg

(Expressions) e ::= vg | injr e | injl e | 〈e, e〉 |
fold e | pack e | let vg = vg in e

(Isos) ω ::= {e1 ↔ e′1 | . . . | en ↔ e′n} | λf.ω |
µf.ω | f | ω1 ω2 | inv ω

(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
fold t | pack t | ω t | let vg = vg in t

Table 2. Terms and types

Higher-order isos. An iso of type T manipulate other isos as basic blocks. Since isos
represent closed computations, iso-variable are non-linear and can be duplicated at
will while term-variable are linear. The constructions λf.ω and ω1 ω2 represent re-
spectively the abstraction of a function and the application of an iso to another. The
construction µg.ω represents the creation of a recursive function, rewritten as ω[g :=
µg.ω] by the operational semantics. The typing rule for µg.ω has a productivity crite-
rion. Indeed, since isos can be non-terminating (because of coinduction), productivity
is important to ensure that we work with total functions. These checks are crucial to
make sure that our isos are indeed bijections in the mathematical sense. The construc-
tion inv ω corresponds to the inversion of the iso ω. If ω is of typeA↔ B then inv ω
is of type B ↔ A.

Finally, our language is equipped with a rewrite system (→) on terms. The evalua-
tion of an iso applied to an argument works with pattern-matching. The non-overlap-
ping and exhaustivity conditions guarantee subject-reduction (see Prop. 3.1).

Example 3.1. Encoding of the isomorphism map in our language, where [] is the
empty list and :: is the list construction. The iso map is of type (A ↔ B) → ([A] ↔
[B]) where [A] is the type of lists of type A. This iso takes an iso of type A ↔ B as
argument and apply it to each element of the list given as argument:

λf.µg.

{
[] ↔ []
h :: t↔ (f h) :: (g t)

}
: (A↔ B)→ [A]↔ [B]).

Example 3.2. We can de�ne the iso of type : A⊕ (B ⊕ C)↔ C ⊕ (A⊕B) asinjl a ↔ injr injl a
injr injl b ↔ injr injr b
injr injr c↔ injl c

.

6 Kostia Chardonnet, Alexis Saurin, and Benoît Valiron

∅;Ψ `e () : 1 x : A;Ψ `e x : A

∆;Ψ `e t : A
∆;Ψ `e injl t : A⊕B

∆;Ψ `e t : B
∆;Ψ `e injr t : A⊕B

∆1;Ψ `e t1 : A ∆2;Ψ `e t2 : B

∆1,∆2;Ψ `e 〈t1, t2〉 : A⊗B
∆;Ψ ` t : A[X ← νX.A]

∆;Ψ ` pack t : νX.A

Ψ `ω ω : A↔ B ∆;Ψ `e t : A
∆;Ψ `e ω t : B

∆;Ψ `e t : A[X ← µX.A]

∆;Ψ `e fold t : µX.A
Γ ;Ψ`e vg1 : A ∆1;Ψ `e vg2 : A Γ,∆2;Ψ `e t : B

∆1,∆2;Ψ `e let vg1 = vg2 in t : B

Table 3. Typing of terms and expressions

∆1;Ψ `e e1 : A . . . ∆n;Ψ `e en : A ODA{e1, . . . , en}
∆1;Ψ `e e′1 : B . . . ∆n;Ψ `e e′n : B ODB{e′1, . . . , e′n}

Ψ `ω {e1 ↔ e′1 | . . . | en ↔ e′n} : A↔ B.

Ψ, f : α `ω ω : T

Ψ `ω λf.ω : α→ T Ψ, f : α `ω f : α

Ψ `ω ω1 : α→ T Ψ `ω ω2 : α

Ψ `ω ω1ω2 : T

Ψ `ω ω : T⊥

Ψ `ω inv ω : T
Ψ, f : α `ω ω : α1 → · · · → αn → α µf.ω is productive

Ψ `ω µf.ω : α1 → · · · → αn → α

Table 4. Typing of isos

Remark 3.1. In our two examples, the left and right-hand side of the ↔ on each
function respect both the criteria of exhaustivity —every-value of each type is being
covered by at least one expression— and non-overlapping —no two expressions cover
the same value. Both isos are therefore bijections.

Property 3.1. The language features subject reduction: If ` t : A and t → t′ then we
have ` t′ : A. Moreover, it enjoys con�uence: Let→∗ be the re�exive, transitive closure
of→. If t→∗ t1 and t→∗ t2 then there exists t3 such that t1 →∗ t3 and t2 →∗ t3. ut

We conjecture that well-typed isos are indeed isomorphisms:

Conjecture 3.1. For all ω : A↔ B, v : A and u : B then ((inv ω) ◦ ω) v →∗ v and
(ω ◦ inv ω) u→∗ u.

4 Towards Curry-Howard

An iso ` ω : A↔ B corresponds to both a computation sending a value of type A to
a result of type B and a computation sending a value of type B to a result of type A.
We can mechanically translate such an iso to a pair of derivations π, π⊥ in µMALL,
where π is a proof of A ` B and π⊥ is a proof of B ` A. This mechanical translation
constructs circular pre-proofs, as discussed in Section 2. We however still need to show
that the obtained derivations respect the validity criterion for circular proof.

Toward a Curry-Howard Equivalence for Linear, Reversible Computation 7

1R
` 1 ⊕1

R` 1⊕ (A⊗ [A])
µR

` [A]
1L

1 ` [A]

φ1

A ` A
id

A ` A
cut

A ` A

φ2

[A] ` [A]
id

[A] ` [A]
cut

[A] ` [A]
⊗R

A, [A] ` A⊗ [A]
⊕2

R
A, [A] ` 1⊕ (A⊗ [A])

µR
A, [A] ` [A]

⊗L
A⊗ [A] ` [A]

⊕L
1⊕ (A⊗ [A]) ` [A]

µL
[A] ` [A]

Fig. 5. Proof corresponding to example 4.1.

Once proven, we would obtain a static correspondence between programs and
proofs. We would however still need to show that this entails a dynamic correspon-
dence between the evaluation procedure of our language and the cut-elimination pro-
cedure of µMALL. For that, we would need to make sure that the proofs we obtain are
indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π⊥,
performing the cut-elimination procedure would give either the identity on A or the
identity on B.

Conjecture 4.1. Validity of proofs. If ` ω : A ↔ B then the µMALL derivations
π : A ` B and π⊥ : B ` A of ω are valid.
Isomorphism of proofs. Provided that the above holds, we moreover have

A ` A id

π⊥

B ` A
π

A ` B
A ` A cut

π
A ` B

π⊥

B ` A
B ` B cut

 B ` B id

Simulation of evaluation. Provided that t is a value and v is a normal form, if ω t→∗ v,
if π is the proof corresponding to ω t, and if π′ is the proof corresponding to v, then
π →∗ π′ with the cut-elimination procedure.

Example 4.1. Consider the iso that, given an iso f and a list [x1, x2, . . . , xn] returns
the list [f x1, (inv f) x2, f x3, (inv f) x4, . . .] written as:

µg.λf.

{
[] ↔ []
h :: t↔ (f h) :: ((g (inv f))t)

}
: (A↔ A)→ ([A]↔ [A]) (1)

We de�ne the two mutually recursive proofs π1 and π2 by π1 = Π(ψf , π2) and
π2 = Π(ψf⊥ , π1) where ψf and ψf⊥ correspond to the isos f and inv f . The proof
associated with the iso in Eq. (1) is π1. The proof Π(φ1, φ2) is shown in Figure 5.

5 Conclusion

We presented a higher-order, linear, reversible language with inductive and coinduc-
tive types together with an interpretation of programs into derivations in the logic
µMALL. This work is still in progress: A number of proofs still need to be completed.

8 Kostia Chardonnet, Alexis Saurin, and Benoît Valiron

After completing the proofs of our current conjectures, we want to extend our lan-
guage to linear combinations of terms in order to study purely quantum recursive
types and generalized quantum loops: in [15], lists are the only recursive type which
is captured and recursion is terminating. The logic µMALL would help providing a
�ner understanding of termination and non-termination.
Acknowledgments. This work was supported in part by the French National Research Agency
(ANR) under the research project SoftQPRO ANR-17-CE25-0009-02, and by the DGE of the
French Ministry of Industry under the research project PIA-GDN/QuantEx P163746-484124.

References

1. Baelde, D., Doumane, A., Saurin, A.: In�nitary proof theory: the multiplicative additive case.
In: Proc. of CSL. LIPIcs, vol. 62, pp. 42:1–42:17 (2016)

2. Baelde, D., Miller, D.: Least and greatest �xed points in linear logic. In: Proc. of LPAR. LNCS,
vol. 4790, pp. 92–106. Springer (2007). https://doi.org/10.1007/978-3-540-75560-9_9

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art.
Springer (2004). https://doi.org/10.1007/978-3-662-07964-5

4. Curry, H.B.: Functionality in combinatory logic. Proceedings of the National Academy of
Sciences of the United States of America 20(11), 584 (1934)

5. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLOS
ONE 13(12), 1–28 (2018). https://doi.org/10.1371/journal.pone.0208561

6. Gaboardi, M., Haeberlen, et al.: Linear dependent types for di�erential privacy. In: Proc. of
POPL. pp. 357–370. ACM (2013). https://doi.org/10.1145/2429069.2429113

7. Girard, J.Y.: Linear logic. Theoretical computer science 50(1), 1–101 (1987)
8. Howard, W.A.: The formulae-as-types notion of construction. To HB Curry: essays on com-

binatory logic, lambda calculus and formalism 44, 479–490 (1980)
9. Jung, R., Jourdan, et al.: RustBelt: securing the foundations of the Rust programming lan-

guage. PACMPL 2(POPL), 66:1–66:34 (2018). https://doi.org/10.1145/3158154
10. Leroy, X.: Formal veri�cation of a realistic compiler. Commun. ACM 52(7), 107–115 (2009).

https://doi.org/10.1145/1538788.1538814
11. Maillard, K., Hritcu, C., Rivas, E., Muylder, A.V.: The next 700 relational program logics.

PACMPL 4(POPL), 4:1–4:33 (2020). https://doi.org/10.1145/3371072
12. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: a core language for quantum circuits. In: Proc.

POPL. pp. 846–858. ACM (2017). https://doi.org/10.1145/3009837.3009894
13. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. LICS.

pp. 55–74. IEEE Computer Society (2002). https://doi.org/10.1109/LICS.2002.1029817
14. Rios, F., Selinger, P.: A categorical model for a quantum circuit description language. In:

Prof. QPL. ENTCS, vol. 266, pp. 164–178 (2017). https://doi.org/10.4204/EPTCS.266.11
15. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quantum control.

In: Proc. FoSSACS. LNCS 10803, pp. 348-364. Springer (2018). https://doi.org/10.1007/978-3-
319-89366-2_19

16. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control.
Mathematical Structures in Computer Science 16(3), 527–552 (2006)

17. Swamy, N., Hritcu, C., Keller, C., et al.: Dependent types and multi-monadic e�ects in F. In:
Proc. POPL. pp. 256–270. ACM (2016). https://doi.org/10.1145/2837614.2837655

https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1371/journal.pone.0208561
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3371072
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1145/2837614.2837655

	Toward a Curry-Howard Equivalence for Linear, Reversible Computation Work-in-progress

