Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2020

Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises

Résumé

We study the asymptotic properties of the stochastic Cahn-Hilliard equation with the logarithmic free energy by establishing different dimension-free Harnack inequalities according to various kinds of noises. The main characteristics of this equation are the singularities of the logarithmic free energy at 1 and −1 and the conservation of the mass of the solution in its spatial variable. Both the space-time colored noise and the space-time white noise are considered. For the highly degenerate space-time colored noise, the asymptotic log-Harnack inequality is established under the so-called essentially elliptic conditions. And the Harnack inequality with power is established for non-degenerate space-time white noise.
Fichier principal
Vignette du fichier
Goudenege-Xie.pdf (241.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03101180 , version 1 (12-01-2021)

Identifiants

Citer

Ludovic Goudenège, Bin Xie. Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises. Journal of Differential Equations, 2020, 269 (9), pp.6988-7014. ⟨10.1016/j.jde.2020.04.047⟩. ⟨hal-03101180⟩
38 Consultations
68 Téléchargements

Altmetric

Partager

More