Newton non-degenerate $\mu$-constant deformations admit simultaneous embedded resolutions - Archive ouverte HAL
Article Dans Une Revue Compositio Math. Année : 2022

Newton non-degenerate $\mu$-constant deformations admit simultaneous embedded resolutions

Résumé

Let $\mathbb{C}^{n+1}_o$ denote the germ of $\mathbb{C}^{n+1}$ at the origin. Let $V$ be a hypersurface germ in $\mathbb{C}^{n+1}_o$ and $W$ a deformation of $V$ over $\mathbb{C}_{o}^{m}$. Under the hypothesis that $W$ is a Newton non-degenerate deformation, in this article we will prove that $W$ is a $\mu$-constant deformation if and only if $W$ admits a simultaneous embedded resolution. This result gives a lot of information about $W$, for example, the topological triviality of the family $W$ and the fact that the natural morphism $(W(\mathbb{C}_o)_m)_{red} \rightarrow \mathbb{C}_{o}$ is flat, where $W(\mathbb{C}_o)_m$ is the relative space of $m$-jets. On the way tothe proof of our main result, we give a complete answer to a question ofArnold on the monotonicity of Newton numbers in the case of convenientNewton polyhedra.
Fichier principal
Vignette du fichier
Leyton-Mourtada-Spivakovsky-Simultaneous-resolution-16-05-20.pdf (449.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03097674 , version 1 (05-01-2021)

Identifiants

Citer

Maximiliano Leyton-Álvarez, Hussein Mourtada, Mark Spivakovsky. Newton non-degenerate $\mu$-constant deformations admit simultaneous embedded resolutions. Compositio Math., 2022, 158 (6), pp.1268 - 1297. ⟨10.1112/S0010437X22007576⟩. ⟨hal-03097674⟩
80 Consultations
69 Téléchargements

Altmetric

Partager

More