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NEWTON NON-DEGENERATE ;~-CONSTANT
DEFORMATIONS ADMIT SIMULTANEOUS EMBEDDED
RESOLUTIONS

MAXIMILIANO LEYTON-ALVAREZ, HUSSEIN MOURTADA,
AND MARK SPIVAKOVSKY

ABSTRACT. Let C**! denote the germ of C**! at the origin. Let V be
a hypersurface germ in C?™! and W a deformation of V over C7*. Under
the hypothesis that W is a Newton non-degenerate deformation, in this
article we will prove that W is a p-constant deformation if and only if
W admits a simultaneous embedded resolution. This result gives a lot
of information about W, for example, the topological triviality of the
family W and the fact that the natural morphism (W(Co),,)rea = Co
is flat, where W(C,),, is the relative space of m-jets. On the way to
the proof of our main result, we give a complete answer to a question of
Arnold on the monotonicity of Newton numbers in the case of convenient
Newton polyhedra.

1. INTRODUCTION

Before stating and discussing the main problem of this article we will give
some brief preliminaries and introduce the notation that will be used in the
article.

1.0.1. Preliminaries on p-constant deformations. Let
Oy :=Clxr,...,xnq1}, n =0,

be the C-algebra of analytic function germs at the origin o of C**! and C?*!
the complex-analytic germ of C"*!1. By abuse of notation we denote by o
the origin of C*"*!1. Let V be a hypersurface of C?*! n > 1, given by an
equation f(x) = 0, where f is irreducible in OF ;. Assume that V has an
isolated singularity at o. One of the important topological invariants of the
singularity o € V' is the Milnor number u(f), defined by

p(f) = dime Oy 41/ J(f),

where J(f) := (01f,...,0n41f) © OF_ is the Jacobian ideal of f. In this
article we will consider deformations of f that preserve the Milnor number.
Let F be a deformation of f:

l

F(a,s) := f(x) + X hi(s)gi(x)

i=1
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where h; € Oy, := C{s1,...,5n}, m > 1, and g; € Oy, ;| satisfy
hi(o) = gi(o) = 0.

Take a sufficiently small open set 2 < C™ containing o, and representatives
of the analytic function germs hq, ..., h; in 2. By a standard abuse of nota-
tion we will denote these representatives by the same letters h1,..., h;. We
use the notation Fy(x) := F(x,s’) when s’ € Q is fixed. We will say that
the deformation F' is p-constant if the open set © can be chosen so that
w(Fy) = p(f) for all s" € Q.

Let £ := {e1,€2,...,ent1} C Z"Jrl be the standard basis of R?t!. Let us

write the convergent power series ¢g1,. .., € C{z1,...,zp41} as
= Z anx®, = Z”“\{o}
aeZ

in the multi-index notation. The Newton polyhedron T'.(g) is the convex
hull of the set | J (o +RZ%;), where Supp(g) (short for “the support of
aeSupp(g)

g”) is defined by Supp(g) := {« | aq # 0}. The Newton boundary of I'; (g),
denoted by I'(g), is the union of the compact faces of I';(g). We will say
that g(x) = > aqx®, Z := Zggl\{o}, is non-degenerate with respect to its

ae”Z
Newton boundary (or Newton non-degenerate) if for every compact face « of

the Newton polyhedron I'; (g) the polynomial g, = >} aq2z® does not have
Qe
singularities in (C*)"*+1.
We say that a deformation of F of f is non-degenerate if the neighborhood
Q of o in C™ can be chosen so that for all s’ €  the germ Fy is non-

degenerate with respect to its Newton boundary I'(Fy).

1.0.2. Preliminaries on Simultaneous Embedded Resolutions. Let us keep
the notation from the previous section. We denote S := CJ', and W the
deformation of V' given by F. Then we have the following commutative
diagram:

Ve W ol x §
i i i@/
0—§

where the morphism g is flat. We use the notation Wy := o7!(s'), s’ € S.

In what follows we will define what we mean by Simultaneous Embedded
Resolution of W.

We consider a proper bimeromorphic morphism ¢ : C2™! x § — C+1l x §

such that C?*! x S is formally smooth over S, and we denote by W* and
W the strict and the total transform of W in CoHtl % S, respectively.

Definition 1.1. The morphism WS Wisa very weak simultaneous res-
olution if W5 — Wy is a resolution of singularities for each s' € S.



SIMULTANEOUS EMBEDDED RESOLUTION 3

Definition 1.2. We say that Wt is a normal crossing divisor relative to S
if the induced morphism Wt — S is flat and for each p € W' there exists an

open neighborhood U < (Cg“+1 x S of p and a map ¢,

U—crtlxs
s

btholomorphic onto its image, such that WtAU is defined by the ideal ¢*Z,
where I = (yi“ e yg’fll), Y1, ---Ynt1 1S a coordinate system at o in Cg“ and

the a; are non-negative integers. If p € f/Iv/s, we require that an+1 = 1 and
that W n U be defined by the ideal ¢*T', where T' = (yn41).

Definition 1.3. We will say ¢ is a simultaneous embedded resolution if,
in the above notation, the morphism W?* — W 1is a very weak simultaneous
resolution and W' is a normal crossing divisor relative to S.

Let us recall that W is defined by

Fle,s) = f(a) + zl: ha(s)gs(a)

where h; € Oy, m = 1, and g; € OF | such that h;(0o) = g;(0) = 0.

Let € > 0 (resp. € > 0) be small enough so that f,g1,...,9; (resp.
hi,...,h;) are defined in the open ball B.(0) = C"*! (resp. B.(0) = C™),
and the singular locus of W is {0} x Bo(0). We will say that the deformation
of W is topologically trivial if, in addition, there exists a homeomorphism ¢
that commutes with the projection

pra @ Be(0) x Be(0) = Be(0) :

B(0) x Ba(0) ——= B(0) x Bu(0)
B (0)

such that &(W) = V' x Bu(0), where V' := £(V), that is to say, £ trivializes
W. The following Proposition relates Simultaneous Embedded Resolutions,
topologically trivial deformations and p-constant deformations.

3
¢

Proposition 1.4. Let V and W be as above. Assume that W admits a
simultaneous embedded resolution. Then:

(1) The deformation W is topologically trivial.
(2) The deformation W is p-constant.

Proof. The Milnor number p is a topological invariant, hence (1) implies (2).
As W admits a simultaneous embedded resolution, there exists a proper

bimeromorphic morphism ¢ : Ci™! x § — Cp* x S such that CIH x S
is formally smooth over S and W is a normal crossing divisor relative to
S. In the topological context this translates into the existence of a proper

—

bimeromorphic morphism ¢ : Bc(0) x By (0) = Bc(0) x By (0) such that for
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all p € o (o) there exists ¢’ > 0, and a diffeomorphism

¢p : Ber(p) < Be(0) x Be(0) = Ber(0) x Be(o)
that trivializes W n B (p). Using partitions of unity and the projection &,
we obtain the desired trivialization. O

1.0.3. On the main result of the article. Keep the notation of the previous
sections. Recall that W is a deformation of V' over S := C* given by F.
In the article [Oka89] the author proves that if W is a non-degenerate p-
constant deformation of V' that induces a negligible truncation of the Newton
boundary then W admits a very weak simultaneous resolution. However if
the method of proof used is observed with detail, what is really proved is
that W admits a simultaneous embedded resolution in the special case when
n=21=m=1, hi(s) = s and ¢g1(z) is a monomial in z. Intuitively one
might think that the condition that W admit a simultaneous embedded
resolution is more restrictive than the condition that W is a pu-constant
deformation. However, this intuition is wrong in the case of Newton non-
degenerate p-constant deformations. More precisely, in this article we prove
the following result:

Theorem. Assume that W is a Newton non-degenerate deformation. Then
the deformation W is p-constant if and only if W admits a simultaneous
embedded resolution.

Observe that if W admits a simultaneous embedded resolution it follows
directly from Proposition[I.4] that W is a py-constant deformation. The con-
verse of this is what needs to be proved.

From the above theorem and Proposition we obtain the following
corollary.

Corollary 1.5. Let W be a Newton non-degenerate pu-constant deformation.
Then W s topologically trivial.

The result of the corollary is already known (see [Abd16]). In the general
case, for n # 2 it is known that if W is a p-constant deformation, then the
deformation W is topologically trivial, (see [LDRT76]). The case n = 2 is a
conjecture (the Lé-Ramanujan conjecture).

The theorem has an interesting implication to spaces of m-jets. Let K be a
field and Y a scheme over K. We denote by Y—Sch (resp. Set) the category
of schemes over Y (resp. sets), and let X be a Y-scheme. It is known
that the functor Y —Sch — Set : Z — Homy (Z xg SpecK[t]/(t™ 1), X),
m = 1, is representable. More precisely, there exists a Y-scheme, denoted
by X(Y),,,, such that Homy (Z xx Spec K[¢]/(t™*1), X) = Homy (Z, X(Y),,,)
for all Z in Y —Sch. The scheme X(Y),, is called the space of m-jets of X
relative to Y. For more details see [Voj07] or [LA18]. Let us assume that
Y is a reduced K-scheme, and let Z be a Y-scheme. We denote by Z,.4 the
reduced Y -scheme associated to Z.

Corollary 1.6. Let S = Cy and let W be a non-degenerate p-constant
deformation. The structure morphism (W(S),,)rea — S is flat for allm > 1.
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Proof. By the previous theorem W admits an embedded simultaneous reso-
lution. Hence the corollary is an immediate consequence of Theorem 3.4 of
[LA1S]. O

The main result of this article initiates a new approach to the Lé-Ramanujam
conjecture. To wit, in characteristic 0 every singularity can be embedded
in a higher dimensional affine space in such a way that it is either Newton
non-degenerate or Schon (this is due to Tevelev, answering a question of
Teissier, see [Teild], [Tevi4] and [Moul7]). Note that Schon is the notion
that generalizes Newton non-degenerate singularities to higher codimensions
and guarantees the existence of embedded toric resolutions for singularities
having this property. The idea is to prove a generalization of the main the-
orem of this article for an adapted embedding and then to apply the first
part of Proposition

Finally, we comment on the organization of the article. In section [2| we
study geometric properties of pairs of Newton polyhedra that have the same
Newton number. This will allow us to construct the desired simultaneous
resolution. In this section we give an affirmative answer to the conjecture
presented in article [BKW19]. This result together with Theorem (see
[Fur04]) is a complete solution to an Arnold problem (No. 1982-16 in his
list of problems, see [Arn04]) in the case of convenient Newton polyhedra.
In section [3] we prove the main result of the article. Finally, in section [4] we
study properties of degenerate p-constant deformations.

2. PRELIMINARIES ON NEWTON POLYHEDRA

In this section we study geometric properties of pairs of Newton Polyhe-
dra having the same Newton number, one contained in the other.

Given an affine subspace H of R™, a convex polytope in H is a non-empty
set P given by the intersection of H with a finite set of half spaces of R".
In particular, a compact convex polytope can be seen as the convex hull
of a finite set of points in R”. The dimension of a convex polytope is the
dimension of the smallest affine subspace of R” that contains it. We will say
that P is a polyhedron (resp. compact polyhedron) if P can be decomposed
into a finite union of convex (resp. compact convex) polytopes. We will say
that P is of pure dimension n if P is a finite union of n-dimensional convex
polytopes. An n-dimensional simplex A is a compact convex polytope gen-
erated by n + 1 points of R™ in general position. Given an n-dimensional
compact polyhedron P < RY, , the Newton number of P is defined by

V(P) := !V (P) — (n — D)W, 1(P) -+ (=1)" 'V (P) + (=1)"V,(P),

where V,(P) is the volume of P, Vi(P), 1 < k < n —1, is the sum of the
k-dimensional volumes of the intersection of P with the coordinate planes
of dimension k, and Vo(P) = 1 (resp. Vo(P) =0 ) if o € P (resp. o ¢ P),
where o is the origin of R".

Let I < {1,2,...,n}. We define the following sets:
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R := {(z1,....,zn) ER": x; = 0if i ¢ I}
R[ = {(acl,...,acn) e R™: T; = Oifi e I}

Given a polyhedron P in R", we write P! := P n R!. Consider an n-
dimensional simplex A < RZ,. A full supporting coordinate subspace of A
is a coordinate subspace R? = R™ such that dim A’ = |I|. In the article
[Fur04] the author proves that there exists a unique full-supporting coordi-
nate subspace of A of minimal dimension. We will call this subspace the
minimal full-supporting coordinate subspace of A. We denote by Ver(P) the
set of vertices of P.

The next result gives us a way of calculating the Newton number of certain
polyhedra using projections.

Proposition 2.1. (See [Fur04|]) Let o ¢ P < RY, be a compact polyhedron
that is a finite union of n-simplices A;, 1 < i < m, that satisfy

Ver(A;) c Ver(P).

Assume that there exists I < {1,2,...,n} such that R is the minimal full-
supporting coordinate subspace of A; and P! = Al for all 1 <i < m. Then
v(P) = |I|'V| (P1) v((P)) where mr : R — Ry is the projection map.

Let &€ := {e1,e3,...,e,} © Z%, be the standard basis of R". Let
P cR%,

be a polyhedron of pure dimension n. Consider the following conditions:
(1) oe P
(2) P’ is topologically equivalent to a |J|-dimensional closed disk for
each J c {1,...,n}.
(3) Let I < {1,...,n} be a non-empty subset. If (aq,.., ) € Ver(P)
then for each i € I we must have either «; > 1 or a;; = 0 (recall that
the «; are real numbers that need not be integers).

We will say that P is pre-convenient (resp. I-convenient) if it satisfies (1)
and (2) (resp. (1), (2), and (3)). In the case when I := {1,...,n} we will
simply say that P is convenient instead of I-convenient.

Given a discrete set S < RZ\{o}, denote by I (S) the convex hull of the
set |J (a +RZ,). The polyhedron I'; (S) is called the Newton polyhedron

a€esS

associated to S. The Newton boundary of T'+(S), denoted by T'(S), is the
union of the compact faces of I'..(S). Let Ver(S) := Ver(I'(S)) denote the
set of vertices of T'(S).

We say that the discrete set S = RZ,\{o} is pre-convenient (vesp. I-

convenient) if I'_(S) := RZ\I"; () is pre-convenient (resp. I-convenient).
The Newton number of a pre-convenient discrete set S = R%\{o} is

v(S) :=v(_(9)).

Note that this number can be negative.
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In the case when P is the polyhedron I'_(S) associated to a discrete set
S, condition (1) holds automatically and condition (2) can be replaced by
the following:

(2") For each e € & there exists m > 0 such that me € Ver(S).

Consider a convergent power series g € C{x1, ..., zy}:

g(x) = Z anx®, Z = Z%,\{0}.

aE”Z

We define I'y (g) = 't (Supp(g)) and I'(g) = I'(Supp(g)). We say that g
is a convenient power series if for all e € £ there exists m > 0 such that
me € Supp(g). Observe that the discrete set Supp(g) is convenient if and
only if the power series g is convenient. We will use the following notation:

Ver(g) := Ver(Supp(g)), and v(g) = v(Supp(g))-
Theorem 2.2. ([Fur0j]) Let P’ ¢ P be two convenient polyhedra. We have
y(P)—v(P) =v (P\P’> >0, and v (P') = 0.

Corollary 2.3.
(1) Let S and S’ be two convenient discrete subsets of RZ;\{o}, and
suppose that T'y(S) < T4 (S"). We have
0 < () - v (8 =v (T-(SNT- ().
(2) Let S, S', and S" be three convenient discrete subsets of RZg\{o}
such that their Newton polyhedra satisfy
I (S) e () e T (5)
and v(S) = v(S"). Then v(S) = v(S") = v(S").
For a set I < {1,...,n}, we write I¢ := {1,...,n}\I. The following re-

sult gives us a criterion for the positivity of the Newton number of certain
polyhedra.

Proposition 2.4. Let o ¢ P be a pure n-dimensional compact polyhedron
such that there exists I < {1,...,n} such that dim (P7) < |J| (resp. P’ is

topologically equivalent to a |J|-dimensional closed disk) for all I ¢ J (resp.
I < J). Assume that if

(B1; -, Bn) € Ver(P)

then for each i € I¢ we have 8; = 1 or 8; = 0. Then there exists a sequence
of sets I < 11,1, ..., 1, < {1,...,n}, and of polyhedra Z;, 1 < i < m, such
that:

a)P:Qz,

@mmzimm,
(3) v(Zs) = 1LV (2]) v(m1(20) = 0.
In particular, v(P) = 0.

Remark 1. Let S be a discrete subset of R%\{o} and € RL, I < {1,...,n}.
Ifa ¢ TL(S), then P:=T_(S(a))\I'+(S) is topologically equivalent to an
|n|-dimensional closed disk. What’s more, by induction on n we obtain that
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dim (P7) = |J| for all J = I if and only if P’ is topologically equivalent to
a |J|-dimensional closed disk. In addition, we observe that dim (P7) < |J|
forall J D I.

Proof. The method of proof that we use is similar to the proof of Theorem
2.3 of [Fur04].

As P is a pure n-dimensional compact polyhedron, there exists a finite
subdivision ¥ of P such that:

(1) If A € ¥, then dim A = n.
(2) For all A € X, Ver(A) < Ver(P).
(3) Given A, A’ € ¥, we have dim(A n A’) < n whenever A # A

Let S be the set formed by all the subsets I’ = {1, ..., n} such that there exists
A € ¥ such that its minimal full-supporting coordinate subspace (m.f.-s.c.s.)
is R

As dim P’ < |J| for all J D I, we obtain that I’ > I for all I’ € S. We
define:

b)) (I') = {A €Y : themd.f.-s.cs. of Ais ]RI/}.
Let us consider the set
v = {A], : AeX (I')} = {01,...,01(11)}.
Given o; € B | let C; := {A eX(I'): Al = UZ'}. Consider the closed set
Z(i,[’) = U A
AECZ'
Observe that given o € o7 (where oy is the relative interior of 0;), there exists

e > 0 such that for each J > I, we have B(a) n Z(J;. "= B (o) n R,
Indeed, as P” is topologically equivalent to a |.J|-dimensional closed disk for
all J o I, there exits € > 0 such that Bc(a) nRZ,  P/. Making € smaller
we may assume that Be(a) nRZ, Zé Iy This implies that (Z(i,p))
is a convenient polyhedron in Ry (remember that if (51,..,5,) € Ver(P)
then for each i € I¢ we have 3; = 1 or f5; = 0), from which it follows that
v (71'[/ (Z(i’]‘/))) > 0 (see Theorem. Now using Propositionwe obtain
v(Zia) = 1'Vinloiw (v (Zi.rm)) 2 0.
By construction we obtain

10
P= U %n

I'eS i=1
and

dim (Z(J Oz I,,)) < |J'| for all (i, I') # (¢, I").

This implies that
1)
V(P) = Z Z 14 (Z(i,l’)) .
I'eS i=1
Rearranging the indices, we obtain the desired subdivision. U
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Let S and S’ be two discrete subsets of RZ,\{0} such that
I (S) < To(8).

We define Ver(S’,S) := Ver(S’)\ Ver(S). The following result tells us where
the vertices Ver(S’,S) are found.

Proposition 2.5. Let S, S’ be two convenient discrete subsets of RZ,\{o}.
Suppose that T1(S) S TL(S") and v(S) = v(S"). Then

Ver(5',5) < (R%,\R%) .
Proof. Let us suppose that Ver(S’,S) ¢ (RZ\RZ,). Let
W = Ver(s', 8) n (RZG\RZ)
and « € Ver(S’, S)\W. Let us consider S” := S u {a}. As the discrete sets
S, S’ and S” are convenient and
Iy (S) e T (S") e T (S),
we obtain v(S") = v(S) = v(S') (see Corollary [2.3). Let us prove that this
is a contradiction. In effect, by definition of Newton number we have
v(S)=nV, — (n—D)Wh_1 +--- (=) 1V + (=1)",
V(8" =nlV) — (n =)WV | 4+ ()" V) + (=)™,
where Vi, := Vi(I-(S)) and V}/ := V;,('_(S5")) are the k-dimensional New-

ton volumes of T'_(S) and I'_(S"), respectively. By construction V! < V,,
and V| = Vi, 1 <k < n— 1, which implies that v(S") < v(S). O

If we suppose that v(S’) = v(S), it is not difficult to verify that this
equality is not preserved by homothecies of RZ,. The following result de-
scribes certain partial homothecies of RZ which preserve the equality of the
Newton numbers.

Let us consider D(S,8") = {I < {1,2,....n}: T_(S)nR! 2T _(5") "R’}
and 1(S,9") = ﬂ I. Tt may happen that
IeD(S,5")

1(8,5') ¢ D(S,5)
or

1(8,8) = &.

Proposition 2.6. Let S, 5" c RZ;\{o} be two pre-convenient discrete sets
such that T+ (S) < T (S"). Suppose that {1,2,..,k} = I1(S,5’), and consider
the map

o1, ooy Tn) = (AT1, ooy AT, Thoy 1, -5 T ), A € Ry,
Then v(pa(S") = v(pa(S)) = A (w(S") - v(S)).
Proof. We will use the notation V,,(S) := V,,(I'_(5)). Recall that
Vin(S) = D Vol (T_(S) nRT),

\|=m

where Vol,,(+) is the m-dimensional volume.
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Let J ={1,2,...,k}. Observe that if J ¢ I, then
I (S)nR' =T_(5) R,

which implies that Vol ('~ (pA(S)) N RY) = Vol ) (T—(¢a(5") n RY). In
particular, if m < k we have V;,,(pA(S)) = Vin(pa(S")). Let us suppose that
m = k. Then:

Vin(0A(S)=Vin(ea(9)) = D) (Vol (F—(2(S")) nR) = Vol (D - (A (S))NRT)).
[I] = m

From this we obtain that Vj,,(¢x(S")) — Vin(oa(S)) = N(Vi(S") — Vin(S))
and v(px(5")) — v(pA(S)) = N (v (') — v(9)). O

The following Corollary is an analogue of Proposition in the pre-
convenient case.

Given S c RZ\{o} and R c R%;, we denote S(R) := S U R.

Corollary 2.7. Let S < RZ\{o} be a pre-convenient discrete set, and
aeRY,, such that T'1(S) S I'+(S(a)). Then v(S(w)) < v(S).

Proof. Observe that there exists A > 0 such that the discrete sets ¢\ (95),
©x(S(a)) are convenient where @y is the homothety consisting of multipli-
cation by . As I(S,S(a)) = {1,...,n}, we have

v(A(9)) = vpa(S(@) = A" (v(S) = v(S(a))

(see Proposition [2.6). By Theorem we have v(px(S(a))) < v(pr(S)),
hence v(S(«a)) < v(S). If

v(5(a)) = v(95)
then v(pa(S)) = v(ea(S(a)). This contradicts Proposition O

Take a set I < {1,...,n}.

Corollary 2.8. Let S, S’, and S” be three I°-convenient discrete sets such
that T (S) c T, (S") c T (S"). Suppose that

IcI(S,S)nI(S,S"
Then v(S) = v(S") = v(S").

Proof. Without loss of generality, we may take I = {1,...,k}. As S, S’, and
S” are I°-convenient, there exists A > 0 such that after applying the map ¢
given by @i (x1,..,zn) = (A1, .., \Tk, Tgs1, ..., Tn), the discrete sets p)(.5),
oA (57), and ¢, (S”) are convenient.

As I < I(S,S8") n I(S,S"), we have

v(oa(S)) = v(pa(8") = A (v(S) — v(5"),
and
v(pA(8") = v(a(8") = N (w(S) = v(8")).
By Theorem we obtain 0 < v(S) — v(S’) and 0 < v(S") — v(5"). O
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Convention. From now till the end of the paper, whenever we talk about
a vertex v of a certain polyhedron and an edge of this polyhedron denoted
by E,, it will be understood that «y is one of the endpoints of E,.
Given I = {1,2,...,n}, let RL, := {(x1,72,...,7,) e RT : 2; > 0ifi e I}.
Let S < R2\{0} be a discrete set, and let v € RL ) be such that
I.(8) € T (S(a)).

Let E, be an edge of I'(S(«a)) such that « is one of its endpoints. Given a
set J with
1S Jc{l,2 ..,n},

we will say that E, is (I, J)-convenient if for all

B := (B1, ..., Bn) € (E4 n Ver(9))
we have §; > 1 for i € J\I and 3; = 0 for i € J°. We will say that E, is
strictly (I, J)-convenient if E,, is (I, J)-convenient and whenever
B € (Eq n Ver(S)),
there exists i € J\I such that 3; > 1.

The following Proposition will allow us to eliminate certain vertices.

Proposition 2.9. Let S < RL\{0} be an I°-convenient discrete set, J a set
such that I S J < {1,...,n}, and a € RL, such that T4 (S) S 'y (S()) and
v(S(a)) = v(S). Suppose that some of the following conditions are satisfied:
(1) o' € T, (S(@)\TL(S) N R,
(2) o € T4 (S()\['+(S)nRZ, and there exists a strictly (I, J)-convenient
edge Eqo of T'(S(a)).
Then v(S(a)) = v(S).

Proof. Let us suppose that o/ € ', (S(a))\I'; (S) "R!. We may assume that
I (S) ST (S()) S Ty (S(a)) (otherwise there is nothing to prove).
Observe that the discrete sets S, S(a’), and S(«) are I°-convenient and
I cI(S,S()nI(S(),S(a)).

Using Corollary we obtain v(S) = v(S(a/)) = v(S(«)). This completes
the proof in Case (1).

Next, assume that (2) holds. Consider a strictly (I, .J)-convenient edge
E, of T'(S(«)). Let 8:= (B1,.,,,0n) € EanVer(S). Let E' c E, be the line
segment with endpoints « and 8. Without loss of generality we may assume
that E' n Ver(S) = {#}. As E, is strictly (I,.J)-convenient, there exists
i € J\I such that 8; > 1. Let 6 > 0 be sufficiently small so that 5; — 6 > 1
and let 3’ € RL; be such that v := 8 — de; + 8/ € T(S(a)) nRZ,. Then

I (5) & T4(S(7) & T4 (S()).
Observe that the discrete sets S, S(v), and S(«) are I°-convenient and
I I(S,5(v)) n 1(5(7), 5(a)).

Then v(S(v)) = v(S(a)) = v(S).
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If o' € T, (S(Y)\['+(S) n R, we have
P4 () € T4 (8(a)) € T4 (S()).
The discrete sets S, S(a'), and S(v) are J°-convenient and
J < I(S,S()) nI(S(a), S(7)).
Then v(S(a')) = v(S(v)) = v(S).

We still need to study the case o € (I'y(S(a))\['+(S(7))) n RZ,.

Consider the compact set C := (T (S(a/))\I'+(S)) n R’, and the map

n

vs: C >Ry 7 vg(r) :=v(S(r)) = > (=1)"""m!V,,(S(1))

m=0
where V,,,(S(7)) := Vo (C_(S(T )))) The map vg is continuous in C. In
effect, recall that V,,,(S(7)) = Z Lo (T (S(7)) nR). Hence
=
Vi(S(7)) = V() + V'(7),
where
V(r)i= 3 Volu(T_(S(1)) nR"),
I
V/(r):= Y Vol (T_(S(r)) nRY).
') =m
I'bJ

The function V : R/ — R;7 — V(7) is continuous, since each summand
is continuous in R”/. The function V' : C — R;7 + V(1) is constant,
since I'_(S()) n (RL\RZy) = T_(S) n (RZ\RZ,). Then each V;,(S(7))

is continuous in 7 € C', which implies that the function vg is continuous in C.

Let us assume that o/ € (I'y (S(a)\['+(S(7))) n RZ, and o' ¢ T'(S(a)).
Let us suppose that vg(a/) = v(S(¢/)) # v(S). Let us consider the set
C:={reC: vg(r)) =vg(c))}. The continuity of vg implies that C is
compact. We define the following partial order on C. For 7,7 € C we will
say that 7 < 7/ if ' (S(7')) € T+ (S(7)). Let us consider an ascending chain

TIST2 <" STy <ov

We will prove that this chain is bounded above in C. Let us consider the
convex closed set
T = ﬂ I, (S

As C is compact, the sequence {7'1, T9, ... ...} has a convergent subsequence
{7—21 9 7—7,23 . Tzn, . } Observe that

T (S(r) = [ T+(S(7i,)),
nz=1
where 7 := lim 7;, € C. By definition, I' € I'; (S(7)), and by construction
n—aoo0
for each i > 1 there exists n > 1 such that ' (S(7;,)) < I'+(S(7:)). Then
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I' =T (S(7)), which implies that 7; < 7 for all ¢ > 1. By Zorn’s lemma C
contains at least one maximal element. Let 7 € C be a maximal element.
Recall that we consider o ¢ T'(S(a)), and we made the assumption that

v(S(a’)) # v(S). Hence 7 ¢ (T4 (S(7))\['(S)) nRY.
Observe that for all o € ', (S(«)) we have

I\ (8) € T (S(") € Ty (S(v,a") < T (S(0).
As the discrete sets S, S(a”), and S(v, ") are I°-convenient and
I I(S(a"),S(y,a")) n I(S(v,a"), S(a)),
we obtain v(S(v,a")) = v(S(a”)) = v(S).
As 7 ¢ T (S(Y)\['+(S) n R’ and v € I'(S(«)), there exists a relatively

open subset 2 of the relative interior of I'y (S(a))\I';(S) N R! such that 7
belongs to the relative interior of

(4 (S(v, ")) \I+ (S (")) n R’
for all o" € Q. We obtain
L. (5 (") ST (8 (na”) S T (8 ("))
The discrete sets S (o), S (7,a"), and S (y,a”) are J°convenient, and
JclI (S (o/') , S (7‘,0/’)) NI (S (7‘, o/') S (7,0/’)) .
Hence v (S (1,a")) = v (S (")) = v(S5).

Given an edge E; of I'(S(7)) that connects 7 with a vertex in Ver(I'(S)),
let E. be the subsegment of E. containing 7 such that |EL n Ver(S)| = 1.
We choose o € ' such that for each edge E; of I'(S(7)) connecting 7 with
an element of Ver(I'(S)) we have dim (EL nT' (S ())) = 0. In other words,
no subsegment of E. is contained in the Newton boundary I'(S(a”)).

Let us consider the compact polyhedron P := ' (S(7,a”))\'+(S(a”)).

Observe that v(P) = 0 (see Theorem [2.2)).
Given the choice of o, there exists 7/ € P such that

My (5()) & T4 (5()
and Qo := (C+(S(7)\['+(S(7"))) < P (it is for achieving the last inclusion
that the choice of o” is really important).

Let Q1 := P\Qo. As dim (Qg’ mQ{’) < |J'|, for all ' < {1,...,n},
we obtain v(P) = v(Qo) + v(Q1). The polyhedra Qp and @, satisfy the
hypotheses of Proposition In effect:

(1) By construction Qp and @); are pure n-dimensional compact polyhedra

ando¢ P =Qpu Q1.
ecall that 7 € . e polyhedron [P satisfies
2) Recall th RZ,. The polyhedron P satisfi

dim (PJ’) <|J'| forallJ' b J,

which implies dim (le> < |J'| and dim (Qll) < |J'| for all J" D J.

(3) Now we will verify that Qf is topologically equivalent to a |.J'|-
dimesional closed disk for all J' > J. As S is I°-convenient and 7 € R, we

have dim (le’) = |J'| for each J' o J. By Remark [1| we obtain that Qf is
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topologically equivalent to a |J'|-dimensional closed disc. The proof for Qi] '
is analogous to the proof for Q({/.

(4) As S is I°-convenient (in particular J°-convenient), we obtain that if
(B1, -, Bn) € Ver(P) then for each i € J° we have §; = 1 or ; = 0. This
property is inherited by Qo and (1.

By Proposition we have v(Qg) = 0, v(Q1) = 0. As v(P) = 0, we
obtain ¥(Qo) = v(Q1) = 0. We have 7 < 7' € C, which contradicts the
maximality of 7 in C. As a consequence we obtain v(S(a’)) = v(S).

Now let us suppose that o’ € T'(S(a)) nRZ,, and let v € RZ,,. For € > 0

small enough a, := o/ +ev belongs to the relative interior of ' (S(a/))\I'1(S).
For the continuity of vg in C := (' (S(a/))\I'+(S)) n R’ we obtain

lir% vs(ae) = v(S(a')),
which implies that v(S(a')) = v(9). O
Corollary 2.10. Let I & J := {1,...,n}. Let S,S" < RZ\{o} be two con-
venient discrete sets such that T (S) G T'(S") and v(S) = v(S’). Suppose

that there ezists o € Ver(S', S) nRL, and an edge E, of T'(S) that is (I, J)-
convenient. Then there exists

(/817 767’1) S Ver(S) N Ea
such that B; = 1 for all i € I€.

Proof. Let R := Ver(S’,S)\{a} and S(R) = S u R. The discrete sets S,
S(R) and S’ are convenient, and I'(S) c T'1(S(R)) S T'+(S’). Then

v(S(R)) = v(9).
We argue by contradiction. If there is no (81, ...,3,) as in the Corollary
then the edge E, is strictly (I,.J)-convenient. By Proposition for all
o e T4 (S(a)\I'£(S) nRZ, we have
v(S(R)) =v(S(Ru {a'})),
which contradicts Proposition U

The following Proposition allows us to fix a special coordinate hyperplane
and gives information about the edges not contained in the hyperplane that
contain a vertex of interest belonging to the hyperplane.

Proposition 2.11. Let S, 5" < RZ\{o} be two convenient discrete sets such
that T (S) S T4 (S") and v(S) = v(S"). Let us suppose that

aeVer(S',8) nRL,, IZ{l,.,n}.

Then there exists i € I¢ such that for all the edges Eo, of T'(S") not contained
in Ry;y there exists (B1, ..., Bn) € Ver(S) n Ey such that B; = 1.

Proof. First we will prove the following Lemma.
Lemma 2.12. Let S < R%,\{o} be an I°-convenient discrete set and
ae]RiO, Ic{l,.,n},

such that v(S) = v(S(«)). Then there exists i € I¢ such that for each edge
Eq of T(S(a)) not contained in Ry, there exists (B, ..., Bn) € Ver(S) n E,
such that B; = 1.
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Proof of the Lemma. By Corollary [2.7) we have |I| < n. Let k be the great-
est element of {1,...,n — 1} such that the Lemma is false for some I with
|I| = k. In other words, for all i € I there exists an edge E,, not contained
in Ry, such that for all (B4, ..., 8,) € Ver(S) n E, we have 3; > 1. Let
J < {1,...,n} be a set of the smallest cardinality such that £, < R’. Then
E, is a strictly (I, J)-convenient edge. Using Proposition we obtain that
for all o/ € T (S(a)\I'+(S) n RZ, we have v(S(a’)) = v(S). Now let us
choose o sufficiently close to « so that for each edge Ey of I'(S(a/)), and
B € Ey n Ver(S) adjacent to o in E, there exists an edge E, of I'(S(«a))
such that 8 € E,. Then the discrete sets S, S(a') are J°-convenient and
do not satisfy the conclusion of the Lemma, which is a contradiction, since
|| > k. O

The proof of the Proposition is by induction on the cardinality of Ver(S’, S).
Lemma says that the Proposition is true whenever | Ver(S’, S)| = 1. Let
us assume that the Proposition is true for all S, S’ such that

| Ver(S",S)| < m — 1.

Let S, S" with | Ver(S’,S)| = m > 2 be such that the Proposition is false.
Then there exists a € Ver(S’,S) such that for each i € I¢ there exists an edge
E, of T (S"), not contained in Ry;, that satisfies the following condition:

(*) for all 8 = (B4, ..., Bn) € Ver(S) n E, we have §3; > 1;
note that condition (*) is vacuously true if
(1) Ver(S) n E, = &.

Observe that for each o € Ver(S’, S)\{a}, we have | Ver(S’, S(a/))| =m —1
and, by Corollary v(S(a)) = v(S").

First, let us suppose that there exists ¢ € I¢ such that does not hold
for the corresponding edge E,. Let us fix o/ € Ver(S’, S)\{a}. Then E,
connects o with a vertex 3 of S, hence o ¢ E’, where E' ¢ E,, is the line
segment with endpoints o and 3. We obtain that the polyhedra I', (S(a')) &
'+ (S") do not satisfy the conclusion of the Proposition, which contradicts
the induction hypothesis.

Next, let us suppose that there exists ¢ € I° such that is satisfied for
the corresponding edge F,. Then |E, n Ver(S’,S)| = 2. Now, take

o’ = (a),...,al) € By n Ver(5',S)
such that o/ # a. If o} > 1, then the Newton polyhedra
I (S(a") & T(S)

do not satisfy the Proposition and (|1)) does not hold, which is a contradiction.
Hence o) = 1. Let € > 0 be such that

ol =o' +ee; € (T4 () \['+(9)) .

Put
R := (Ver(S', S\{c'}) U {l}.
Then I'y (S) & ' (S())) & T+(S(R))) & T+(5).
The discrete sets S, S(al), S(R), and S’ are convenient. We have

V(S(R)) = v(S).

=
2
Q
£
=
I
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Let us assume that € is small enough so that there exists an edge E/, 3 a of
I'(S(R)) such that o! € E!,. Then the Newton polyhedra ' (S) & ' (S(R))
satisfy the preceding case (namely, o > 1). This completes the proof of the
Proposition. O

Corollary 2.13. Assume given two convenient discrete sets S, S’ < RZ;\{o}
such that T (S) S T (S") and v(S) = v(S"). Assume that

a e Ver(S',5) nRL,.
The for the i € I¢ of Proposition there exists an edge E, of T'(S"),

and (B, ..., Bn) € Eq n Ver(S), such that B; = 6;5, j € I, where 6;5 is the
Kronecker delta.

Proof of the Corollary. By Proposition there exists ¢ € I¢ such that for
all the edges E, of I'(S”), not contained in Ry;y, there exists

(81, ..., Bn) € Ver(S) n E,
such that §; = 1. Since the set S is convenient, there exists m > 1 such
that me; € Ver(S). Let J = I u {i}. Since a,me; € R’, there exists a
chain of edges of I'(S") connecting o with me;, contained in R’. The edge

E, belonging to this chain and containing « satisfies the conclusion of the
Corollary. O

Remark 2. Using the same idea as in Corollary but using Lemma
instead of Proposition [2.11], we can prove the following fact. Let I &
{1,...n} and let S = R \{o} be an I-convenient discrete set. Let o € RL
be such that T (S) S T'y(S(a)), and v(S) = v(S’). Then for the i € I¢
of Lemma[2.19 there exists an edge E, of T'(S(a)), and (B, ..., Bn) € Eq N
Ver(S), such that B; = 6;5, j € I¢, where d;; is the Kronecker delta.

The following Theorem generalizes to all dimensions the main theorem of
[BKW19]. In [BKW19| this result is conjectured.

Definition 2.14. Let S,5" < RZ\{o} be two discrete sets such that
T (S) G T (8",
Ic{l,..,n} and a € Ver(S',S) n RL,. We will say that o has an apex if:
(1) I E{1,...,n}

(2) There exists i € I° and a unique edge of E, of T'(S’) that contains a
and is not contained in Ry;.

In this case the point 8 € Ver(S) n E, adjacent to o in E,, is called the apex
of a. We will say that an apex, B := (B, ..., Bn), is good if Bj = 65, j € I°.

Remark 3. Let S < RZy\{o} be a convenient discrete set,] & {1,...,n} and
aeRL, such that ' (S) ST (S(«)). The condition that o has a good apex
B e RV 4 e I¢ is equivalent to P := T (S(a))\I';(S) being a pyramid
with apex 8 and base P N Ry.

Theorem 2.15. Let S, 5" < RL\{o} be two convenient discrete sets such
that T4 (S) & T (S"). Then v(S) = v(S") if and only if each o € Ver(S’,S)
has a good aper.
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Proof. First we will prove the following Lemma.

Lemma 2.16. Let S < R2\{o} be a discrete set anda e RL, I G {1,...,n},

>0

such that T4 (S) & 'y (S(a)), and o has a good apex. Then
v(S(a)) = v(S).

Proof of the lemma. Let 8 be a good apex of a. Let i € I be such that
Be Rlu{z}.

>0
Given an element m € {1,...,n} and J c {1,...,n} such that |J| = m, we

will use the notation
Vin(a, J) = Vol (T (S()) n R7) — Vol,,,(I_(S) nRY)

As a e RL,, we have

v(S(a)) —v(S) = =™ 2 V(e J)

2
m=|I| [J| =m
IcJ
n—1
= Z}H(—l)m‘ lZ (I['WVin (e, J) = ([J] + )WVinpa (e, J o {i}))
m= Jl=m
ig J,IcJ

As the apex of « is good, we obtain
|J"Win(a, J) = (|J] + D)WVigi (e, J U {i})
which implies that v(S) = v(S(«)). O
Now we will prove that if each o € Ver(S’,S) has a good apex, then
v(S) = v(9').

The proof is by induction on the cardinality of Ver(S’,S). Let us assume
that the implication is true for all S and S’ such that | Ver(S’,S)| < m.
To verify the implication for |Ver(S’,S)| = m, let a € Ver(S',S) and
R = Ver(S',S)\{a}. By the induction hypothesis v(S(R)) = v(S) and
by Lemma [2.16] we have v(S") = v(S(R)). This proves that v(S’) = v(9).

To finish the proof of the Theorem we need the following Lemma.

Lemma 2.17. Let S < RZ%\{o} be a discrete set and let « € RL;, I &
{1,...,n}, be such that T'1(S) & I'+(S(a)). Let us suppose that S(a) is
I¢-convenient and that v(S(a)) = v(S). Then « has a good apex.

Proof of the Lemma. Let i € I° be as in Remark [2l Then there exists E, of
I'(S(«)), and 8 := (B1, ..., Bn) € Eq n Ver(S), such that 3; = d;5, j € I¢. We
want to prove that (3 is a (necessarily good) apex of a.. Let us assume that
(8 is not an apex of «, aiming for contradiction. Then there exits another
edge a € E/, de I'(S(a)), and 8" := (B4, ..., ),) € E., n Ver(S) adjacent to «
in E/, such that g} = 1.
Let us consider . := ' + ee;, and the discrete set S = (S\{8'}) v {B.},

€ > 0. Let us assume that € is small enough so that:

(1) Ver(5¢) = (Ver(S)\{B'}) v {5}

(2) There exists an edge E, of I'(S¢(«)) such that g, € ES, n Ver(S€) is

adjacent to a in Ef,.
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Let P = (I'+(S(a)\I'+-(S5¢)). Let Qo be the convex hull of the set
{8} o (P nRyy)

(observe that @y does not depend on €) and Qf := P\Qo. Recall that
satisfies 3; = d;;, j € I°. Then, using the same idea as in the proof of Lemma
2.16|we obtain v(Qp) = 0. As dim (Qg N (Qi)‘]> < |J| forall J < {1,...,n},
we have

v(P€) = v(Qo) + v(Q1). Then v(P) = v(Q)).

As S¢(a) is I°-convenient, ) satisfies the hypotheses of Proposition
(to prove this statement use the same idea as in the proof of Proposition
2.9). Let us consider the sequence

Tu {Z} c 11,12, ,Im c {1, ...,n},
and the polyhedra Z;, 1 < j < m, such that

mei=0z
2) v(@QD) = X v (7)) =0

® v () =100 (%)) v (v () 0

(the existence of these objects is given by Proposition [2.4]). For each j, 1 <
J < m, we may choose the family Z¥ of polyhedra to vary continuously with
€. More precisely, we can choose the Z5 to satisfy the following additional

condition: for each j, 1 < j < m, either Zje- = Z]Q for all small € or Ver(Z;-)
differs from Ver(ZJQ) in exactly one element, 8. # (', for all small € > 0.
Since i € I, we have 77, (8;) = 77,(8'). This implies that v (771j (Z;)) is
independent of € for all 1 < j < m. For € = 0, we have

0
v (m, (27)) = 0.
Hence v(P€) = v(Qf) = 0 for € small enough. Then there exists a0 set J,
{itul < J < {1,2,...,n}, such that the edge E is strictly (I, J)-convenient.
By Proposition given o € T4 (S¢(a))\I'1(S¢) n RZ,, we have

v(S€(a’)) = v(S°).

This proves that [I| < n —1: indeed, if |[I| = n — 1, then o € RZ ), which
contradicts Proposition

Let r be the largest element of {1,...,n—1} such that the Lemma is true
for all I such that |I| > r. Now let us assume that |I| = r. Let us choose o/
sufficiently close to « so that for each edge E, of I'(S¢(¢)) and

B € Ey n Ver(S°)

adjacent to o/ in E,/, there exists an edge F, of I'(S¢(«)) such that 5 € E,.
This implies that o’ does not have a good apex, which contradicts the choice
of r, since |J| > r. This completes the proof of the Lemma. O
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Now we can finish the proof of the Theorem. We will prove that if
v(S) = v(S)

then each o € Ver(S’,S) has a good apex. The proof is by induction on
the cardinality of Ver(S’, S). Lemmal[2.17 shows that the implication is true
for | Ver(S’,S)] = 1. Let us assume that this is true for every pair (S, 5’)
of convenient discrete sets such that | Ver(S’,S)| < m. Let us prove the
result for | Ver(S’,S)| = m. Let a € Ver(S’,S), R = Ver(5’, S)\{a} and
ae = (1 + €)a, where € > 0. Then

P (8) €T (S(a0)) G T (S(ae) (R) € T4 ().
By Corollary [2.3] we have v(S(ae)(R)) = v(S(a.)). Observe that
| Ver(S(ae)(R), S(ae))| <m —1.

By the induction hypothesis, each o’/ € R has a good apex 5 € Ver(S(a.))
for the inclusion I'; (S(c)) & I'+(S(ae)(R)) of Newton polyhedra. Since all
the non-zero coordinates of . are strictly greater than 1, we have 8 # «,
so that 8 € Ver(S). We take € small enough so that for every o’ € R every
edge E, of I'(S(a¢)(R)) that connects o with a vertex in Ver(S) is an edge
of T'(S"). Thus every o/ € R has a good apex for the inclusion

P (S) S T4(S)
of Newton polyhedra.
Now it suffices to verify that « has a good apex for the inclusion
(2) P (S) c T4(S)
of Newton polyhedra. Let € > 0 and put R, := {(1 4+ €)a’ : o/ € R}. Then
[ (8) € T4(S(R)) S T4 (S(R) () € T4 (S).

By Corollary we have v(S(R.)) = v(S(Re)(a)) = v(S). Observe that
Ver(S(Re)(a), S(R)) = {o}. By Lemma [2.17] « has a good apex

B € Ver(S(R)).

Since every non-zero coordinate of every element of R, is strictly greater
than 1, we have 8 ¢ R,, so that 5 € Ver(S). Take e small enough so that
every edge E, of I'(S(R.)(«)) that connects o with a vertex in Ver(S) is an
edge of T'(S’). Then § is a good apex of « for the inclusion , as desired.
This completes the proof of the Theorem. O

We end this section by recalling a result that relates the Milnor number
to the Newton number.

If the formal power series ¢ is not convenient, we can define the Newton
number v(g) of g (v(g) could be o) in the following way. Let £ < & such
that there does not exist m € Z-¢, such that me € Ver(g). We define the
Newton number of g as

v(g) :== sup v(Supp(g) u &'m),

mGZ>0

where &'y, := {me : e€ &'}
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Theorem 2.18 (See [Kou76|). Let h € OF . Then u(h) = v(h). Moreover,
w(h) = v(h) if h is non-degenerate.

Remark 4. Let h € Oy | be non-degenerate and convenient. Then j(h) < oo,
which implies that h has, at most, an isolated singularity in the origin o.

Ezample 1. Consider the following families of non-degenerate deformations:
FMNx,y,2,8) i= 22 + P2 4+ 25 + 8 4 sy A > 1.

Observe that F' is a p-constant deformation of Briancon-Speder (convenient
version), see [BSTY]. By virtue of Theorem and Proposition for

each \ =1 the deformation F* is non-degenerate and p-constant.

3. CHARACTERIZATION OF NEWTON NON-DEGENERATE H-CONSTANT
DEFORMATIONS

First let us recall some information regarding the Newton fan and toric

varieties. Given S < Z;ng\{o}, consider the support function

hr,(s): A =Ry am hp, (g)(a) = nf{{a,p) | pe ' (5)},

where A := ]R;gl is the standard cone, and {:,-) is the standard scalar
product. Let 1 < ¢ < n, and let F' be an i-dimensional face of the Newton
polyhedron I', (S). The set op := {a € A : {a,p) = hp,(5)(), Vp € F}
is a cone, and I'*(S) := {op : F is a face of I'1(S5)} is a subdivision of the
fan A (by abuse of notation we will denote for A the fan induced by the
standard cone A). The fan I'*(.59) is called the Newton fan of S. Let A’ < A
be a strict face of the standard cone A | and (A’)° is the interior relative to
A'. Observe that if there exists a € (A’)® such that hp, () = 0, then A’ is
a cone of the fan I'*(S). We will say that ¥ is an admissible subdivision of
I'*(9) if ¥ is a subdivision that preserves the previous property, which is to
say that if there exists o € (A")° such that hp_ (g)(a) = 0, then A’ € . In
the case that the discrete set S is convenient, an admissible subdivision of
I'*(S) is a fan where there are not subdivisions of the strict faces of A.

Given a fan 3, we denote Xy, the toric variety associated to the fan 3.
Given o € %, we denote X, as the open affine of Xy, associated to the cone o.
Let X be a subdivision of X, it is known that there exists a proper, birational
and equivariant morphism,r : Xs» — Xy, induced by the subdivision. Given
o' € ¥', we denote T, 1= 7[x .

Now we will use the notations from Section Let V be a hypersur-
face of C"*!, provided by a unique isolated singularity at the point o. Let
us assume that V' is given by the equation f(x) = 0, where f € OF
is irreducible, and let o : W — C{' be a deformation of V given by
F(z,s) € C{x1, ..., Tnt+1, 515 -, Sm}-

Without loss of generality we can assume that the germ of analytic func-
tion f is convenient. In effect the Milnor number, u(f) := dimc O5_/J(f),
is finite, then for each e € £ there exists m >> 0 such that ™€ belongs to
the ideal J(f), which implies that the singularity of f and of f + 2™¢ have
the same analytic type.

Let ¥ be an admissible subdivision of I'*(Fs) (not necessarily regular),
and we denote 7 : Xy — C"*! morphism given by the subdivision of A.
Using the morphism C?*! — C"*! we can consider the base change of 7 and
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Xy to the base (CZ“. By abuse of notation we will note for 7 : Xy — (CgJrl
the base change morphism.

Let us recall the following known fact. Let V' be a hypersurface of C?*1,
n = 1, provided by a unique isolated singularity at the point o. Let us
suppose that V' is given by the equation g(z) = 0, where g € OF ;. Let us
suppose that ¥ is a regular admissible subdivision of a Newton fan I'*(g). If
g is non-generate with respect to the Newton boundary, then the morphism
between toric varieties 7 : Xy, — C?*! defines an embedded resolution of V'
in a neighborhood of 7 1(0) (see [Var76], [Oka87] or [[sh07]). This shows
that if I'y (Fs) = I'; (f), where s is the generic point of C*, and F' is a non
degenerate deformation of f (u-constant deformations of f for the Theorem
in particular), a regular admissible resolution of the Newton fan defines
a simultaneous embedded resolution of W. Whereby for the rest of this
section we will assume:

(1) F(z,s) € C{x1,...,Tn+1,51, .-, Sm} 1S a non-degenerate p-constant
deformation of f.
(2) T4 (Fs) # ' (f). In particular Ver(Fs, f) := Ver(F;)\ Ver(f) # .
Let morphism ¢ : X5 x C™ — C?*! x C™ be induced by 7. Let s be
the generic point of CJ'. Given a € Ver(Fs) we denote for o, the (n + 1)-
dimensional cone of I'*(F}) generated by all the non-negative normal vectors

to faces of I'; (Fs) which contain to a. Denote for W the total transform
of W by ¢.

Proposition 3.1. Let s be the generic point of CJ*, and let us assume
that v(Fs) = v(f). Then there exists an admissible subdivision, ¥, of
I'*(Fs), such that for each o € Ver(Fs, f), the fan ¥ defines a subdivision,
{ok,....,0"}, regular to o4, such that WA (X_; xCy') is a normal crossings
divisor relative to CI* for j € {1,...,r}. )

Proof. Let us recall that £ := {e1, ea,...,en41} C Z;Lgl is the standard basis
of R"*1. First we will construct a simplicial subdivision of I'*(Fy). Let
I'*(F5)(7) be the set of all the j-dimensional cones of I'*(Fs). Let us consider
n
a compatible simplicial subdivision, ¥5, of [ J I'*(Fs)(j), such that if o’ is
j=1
a simplicial j-dimensional cone of I'*(F)(j), 1 < j < n, then o’/ € ¥.S and
YS(1) = I'™(Fs)(1), where 35(1) is the set of all the 1-dimensional cones of
xS.

Let us consider the case
a € Ver(Fy, f).

By Theorem a has a good apex. Then there exists I & {1,...,n + 1}
such that o € RI>0 and 7 € I¢ such that there exists a single edge F, 3 «, of
['(Fs) not contained in Ry;. Let 8 = (51, ..., Buy1) € Ver(Fs) n B, be the
good apex, which is to say 3; = d;;, j € I°.

Observe that e; € £, is an extremal vector of o,. Let us consider the
following simplicial subdivision of og:

Y%(0q) := {Cone(e;,7): TeXSand T C o} u{TeXS: 7 cCa.},
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where cone Cone({-}) is the cone generated by {-}. Now let us consider the
case

a € Ver(Fy)\ Ver(Fs, f).

let ¥%(0,) be an arbitrary simplicial subdivision of o, that is compatible
with ¥S. Then

Y= U ¥%(0a)
aeVer(Fs)
is a simplicial subdivision of I'*(Fy). As Fj is convenient, the faces of o,
a € Ver(Fy), contained in a coordinate plane are simplicial cones, then %%
is an admissible subdivision.

Now we will define a subdivision of ¥* to obtain the sought after fan.

Let o € Ver(Fy, f). By abuse of notation we will denote for o, a cone
in ¥%(oq)(n + 1). Without loss of generality we can suppose i = n + 1,
in this manner we have that o, = Cone(ey,1,7) with 7 € ¥.5. We denote
Ho = Ry, 113 nT'4 (Fs) and Hy,....,H,, the n-dimensional faces of I'y (Fs) that

n

define o4, then () H; = {a}. Then E, := () H;
j=0 Jj=1

Let p1, ..., pn, be non-negative normal vectors to the faces Hy, ..., H,. Then
0y := Cone(pi, ..., Pn, en+1). Now we will construct a regular subdivision of
0q- Let us consider the cone 7 := Cone(py,...,pn) C 04, and a regular
subdivision RS(7) of 7 that does not subdivide regular faces of 7. Then
RS(7) does not subdivide faces A" < A. Let 7/ € RS(7), then there exists
q1, ---, Gn € Cone(py, ..., pp) such that 7' := Cone(qy, ..., ¢,). Observe that the
cones

(x) ol = Cone(q1, ..., qn,€n+1)

define a subdivision of the cone o, that can be extended to a subdivision X of
Y% that does not subdivide faces A’ < A, which implies that Y is admissible.
Now we will prove that o/, := Cone(qx, ..., Gn, €n+1) is regular. Looking at

g; as column vectors, and consider the matrix of the size (n + 1) x n:

qi1 gn 1
dgin+1 " dnn+l

For each j e {1,...,n + 1} let A; be the matrix of the size n x n obtained
by deleting the row j of the matrix A. As 7' := Cone(q, ..., q,) is regular,
we have that the greatest common divisor, ged(dy, ..., dy+1), where

dj = | det(A;)],
is equal to 1. Let us suppose that the cone
0-; = Cone(q17 <oy Qny en+1)

is not regular, then |det(qi, ..., gn, €n+1)| = dns1 = 2. For each Hj, 1 < j <
n we have that o, 8 € Hj, then {o,p;) = {(B,p;) for all 1 < j < n, which
implies that {(«,q;) = (B, ¢;) for all 1 < j < n. With which we obtain that
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Gjn+1 = 2pq (o — Br)gji for all 1 < i < n (remember that f is the good
apex of a). Then dy,41 divides to d; for all 1 < j < n, which contradicts the
fact that ged(dy, ..., dp+1) = 1. Which implies that o/, is regular.

Observe that there exist coordinates yi, ..., yn+1 of Xy = C"t1 (before
the base change) such that the morphism

Tg!, (y) = Tol (yla -~-7yn+1) = (1'17 '--al'nJrl)
is defined by:

e dlntl Gn n+1 oL Ini .
Tne1:=Y; " ynd " Y and =yt ey, 1 <@ <on.

From this we obtain
F(WU’Q(y)aS) = yTl o y;nnf(y’s)’ m; = <qi7a>7 1 < 1 S n.

Let us suppose that r = (71,...,7,41) is a singular point of F(y,0), then
there exists 1 < j < n such that r; = 0. Without loss of generality we can
suppose that 7, = 0. We know that for each 5’ € E, n Ver(f) we have that
{a,qiy =, qi), for all 1 < i < n, and as « has a good apex, we obtain that

F(y,s) = co(s) + H(G,5) + K(yn+1,8) + yaG(y, 5),
where ¥ = (y1, ..., Yn—1), co(0) = 0, and
K(Yns1,5) = c1(8)yns1 + -+ + a(s)yh 1, c1(0) # 0.
If B, n Ver(f) = {8}, then K(yn+1,5) = c1(8)ynsr1. Which shows that

r cannot be a singular point of F. If |E, n Ver(f)| > 1, then the singular
point 7 = (71, ..., 7p41) satisfies that

dF('I“nJrl, 0)
dyn+1

Which implies that r,.1 # 0. We will prove that this is contradiction.
Let W = Ver(Fs, f) nR,,+1 and we define

Fl(z,s) = f(2) + 2 ew dy(s)27, dy(0) = 0 for all y € W.

= 0.

We can assume that F’ is a non degenerate deformation of f. As I's(f) <
I+ (F!) < T (Fy), we have that v(F}) = v(f) (see corollary [2.3). By defini-
tion of F’, the point « belongs to Ver(F., f) = W. We note o, the cone of
I'*(F!) associated to a. By construction the cone o, of I'*(F!) is the cone
oo of T*(Fy) previously defined. Using the same regular subdivision of o,
we can define a regular admissible subdivision >’ of the fan T'*(FY).

Let o/, be one of the two regular cones of the subdivision of o, (see (x)).
As we previously obtained

Flmgy, (y),8) = 9" -y F'(y, s), mi ={gi,a), 1<i<n.

Then 7 is a singular point of F(y, o) if and only if r is a singular point of
F'(y,0) (in fact F(y,0) = F'(y,0)). We recall that |E, n Ver(f)| > 1, and
that F, is the only edge of 'y (F§) not contained in R;, which contains « and
its good apex. Observe that F, also is the unique edge I" . (F) which satisfies
the previous properties. Let 8’ # « an end point of E,, and o € I'*(F) the
cone associated to 8'. As |EqnVer(f)| > 1, and Ver(F., f) € R,41, we have
that the cone oz belongs to I'*(f). Then the regular subdivision 0[13,, ...,O’E;
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of o defined by the regular admissible subdivision ¥’ can be extended to
regular admissible subdivision X" of 'y (f). By construction there exists
1 <j < t¢such that r e X ;, = Cn+l. But f is non degenerate, which
ﬁ/
implies that V¥ n X_i is smooth, from where we obtain the sought after
5/
contradiction. This implies that F(m,(y),s), which is a normal crossings
divisor relative to CJ* around 7TU_,1(O) x Co*. O

The following theorem is the main result of this article. Let s be the
generic point of CI'. We will construct a regular admissible subdivision, 3,
of IT*(Fy) in the manner that p : X5 x (C™,0) — C2! x C™ is the sought
after simultaneous embedded resolution. Observe that for the result com-
mented upon previously, 7 : Xy, — C?*! defines an embedded resolution of
W.

Theorem 3.2. Assume that W is a Newton non-degenerate deformation.
The deformation W is p-constant if and only if W admits a simultaneous
embedded resolution.

Proof. The “if” part is given by Proposition We will prove “only if”.

By Proposition there exists an admissible subdivision, X, of I'*(Fj)
such that for each « € Ver(Fy, f), the fan X defines a subdivision o}, ...., 07,
regular of o, such that Wt X,i x C7" is a normal crossings divisor relative
to C* for i € {1,...,7}. Consider the set, 3(j), of all the cones of dimension
j of X. Observe that given a regular admissible subdivision of ¥(j), there
exists a regular admissible subdivision of ¥(j + 1) compatible with the given
subdivision. Using recurrence we have that there exists a regular admissible
subdivision of ¥ that does not subdivide its regular cones. By abuse of
notation we will denote for 3 the regular admissible subdivision. To finish
the proof we still need to consider a € Ver(Fj)\ Ver(Fs, f). Let us consider
the cone o R’;(;l generated by all the non-negative normal vectors to faces
of Ty (Fy) which contain a «, and let o', ...,0” be the regular subdivision
defined by X. Let us suppose that p’i, - pfl 41 are the extremal vectors of ot
As o' is regular, we have that X, =~ C"*! (before the base change). Then
we can associate the coordinates ¥y, ..., yn+1 to X, such that 7 := 7| X,

is defined by

ﬂdi(y) = 7To'i(yla "-7yn+1) =2 := (1'1, "-7:1771—&-1);

where z; := ylljlj ---yi’r&”, pé- = (pé-l, ...,pé- ne1)s 1 <j<n+1. Then

F(T('oi(y),S) = y71n1 e y;nfflf(yvs)a my = <p§-,0(>, I<jsn+l
Let c(s) be the coefficient of degree zero of F(y,s). As a ¢ Ver(Fs, f),
then c(s) # 0 for all s € CJ*. Then the property of non degeneracy of Fj
implies that F'(7,i(y), s) is a normal crossings divisor relative to C* around
7r;-1 (o) x CI. O
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4. THE DEGENERATE CASE

Let us recall that F' is a deformation of f:

F(z,s) = f() + Nicy hi(s)gi(),
where h; € O}, := C{s1,...,s8,}, m = 1, and g; € O ;| such that h;(o) =
gi(0) = 0. Consider the relative Jacobian ideal

Jo(F) = (8$1F,...,6xn+1F) C C{S1, vy Smy L1y ooy Tpp1 }-

The following theorem gives a valuative criterion for the p-constancy of a
deformation.

Theorem 4.1 (See [Gre86], [LDuS73] and [Tei73]). The following are equiv-
alent:

(1) F is a p-constant deformation of f.
(2) For alli€l,....m we have that 0s,F € J,(F'), where J,(F) denotes
the integral closure of the ideal J,(F').
(8) For all analytic curve 7 : (C,0) — (C**1 x C™,0), v(0) = o, and for
all i€ {1,...,m} we have that:
Ordy(0s, F' o y(t)) > min{Ord¢ (0, F oy(t)) | 1 < j <n+1}.

In the general case the following proposition is analogous to Corollary
In the rest of the section let us assume that F' is a p-constant defor-
mation of f.

Proposition 4.2. Let us conserve the hypothesis on f and F, and let us
suppose that Supp(Fs, f) nRL, # &, I < {1,....,n + 1}. Then given I &
Jc{l,.,n+ 1}, F satisfies at least one of the following conditions:
(1) F|gs is a p-constant deformation of f|gs provided by a unique iso-
lated singularity at the point o.
(2) There exists © € J° and  := (B1, ..., Bn+1) € Supp(Fs) such that
Bi = dij, for j € JC.
A difference between the degenerate case and the non-degenerate cases is
that we do not have, in general, that the point 8 € Supp(Fs) of the previous
proposition belongs to the set Supp(f).

Example 2. Consider the following deformation

F(x1,29,23,8) := o5 + a8 + 23 + a32? + 2saiadas + s?xlxs.

In the article [Alt87] it is shown that F' is a p-constant degenerate deforma-
tion of the non-degenerate polynomial f(x1,x2,x3) := x?+:cg+a:g+$§$§ . In
this example we have that Ver(Fs, f) := {(4,1,0)} < R{;(’f} and B := (2,2,1).
Observe that 3 ¢ Supp(f).

Proof of the Proposition[{.2 There is not loss of generality in supposing
that J = {1,...,k}, k < n. We can always write F' in the following manner:

F(l’l,...,$n+1,3) =
G(:Cl, ..,mk,s) + Zk<i xiGi(acl, ...,xk,s) + Zk<i<j l’il'jGij(;Cl, ...,$n+178),
where s = (s1, ..., 8;,). Observe that F|gs = G, and let g := f|gs = G|s=0.

Let us suppose that (2) is not satisfied, then G;(z1,...,x,s) = 0 for all
k<i1<n+1, then



26 M. LEYTON-ALVAREZ, H. MOURTADA, AND M. SPIVAKOVSKY

F(x1,...,xnt1,8) = G(x1, .., 7k, S) "‘qu’g]’ z;xjGij(x1, .o, Tng1, S)-

So we obtain that:

(1) oF = o0,G+ Zk<z<j ZCix]ﬁlGij, for 1 <1<k,

(2) oF = Zk<i<l x; Gy + Zléj l‘lej + Zk<z<j :EzwjalGij, for k < I,

(3) ﬁsj,F = 6Sj,G + Zk<z<j xixjé’sj,Gij, for 1 <5/ <m.
Let us suppose that the singularity of g(z) = G(x1, .., zk, 0) is not isolated in
the origin o. Then for each open set 0 € Q c C¥ there exists (p1, ..., pp) € Q
such that:

(1) g(p17 apk) = 07

(ii) ag(p1,...,pr) =0, for 1 <1 < k.

Then (p1, ..., Pk, 0, ...,0) € C*! is a singularity of f, which is a contradic-
tion.

Let us suppose that G(x1, ..., 2, s) is not a p-constant deformation of g.
Then by virtue of theorem there exists 1 < 7 < m, and an analytic curve

Y(t) = (t"ar(t), ..., t" 0 ag(t), 18 by (t), ..., t by (t)), 74, qi € Z=o0,
such that:
Ord; d5,G o v(t) < min; ;< {Ord; 6;G o y(t)}.
Let us consider the following analytic curve:

BE) = (a1 (1) ooy 74 gy (£), 291 (1), ooy 197Dy (1)),

Using the equations (1), (2) and (3), we observe that we can choose
the large enough rgy1,...rn11, and the ag1(t),...an41(t), which are general
enough in the manner that:

(1) Ordy 05, F o B(t) = Ordy ds,G o (t) for 1 < j
(2) Ord; 0;F o B(t) = Ord; ;G o y(t) for 1 < i < k,
(3) Ordy O F o B(t) = maxi<j<k{Ordy 0;F o 5(t)} for k < 1.
This implies that
Ord; 05;F o B(t) < min {Ord; 0;F o 3(t)}.

1<i<n+1

<m,
k

This contradicts Theorem since F' defines a p-constant deformation.
Then G(x1, ..., Tk, s) is a p-constant deformation of g or there exists at least
one non-zero G;. O
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