Compactors for parameterized counting problems - Archive ouverte HAL
Article Dans Une Revue Computer Science Review Année : 2021

Compactors for parameterized counting problems

Résumé

The concept of {\sl compactor} has been introduced in [{\em Eun Jung Kim, Maria J. Serna, and Dimitrios M. Thilikos. Data-compression for parametrized counting problems on sparse graphs. ISAAC 2018, LIPIcs Vol. 123:20:1–20:13\,}] as a general data-reduction concept for param\-etrized counting problems. For a function $F:\Sigma^*\to \Bbb{N}$ and a parameterization $\kappa: \Sigma^*\to \Bbb{N}$, a compactor $({\sf C},{\sf E})$ consists of a polynomial-time computable function ${\sf P}$, called \emph{condenser}, and a computable function ${\sf M}$, called \emph{extractor}, such that $F={\sf M}\circ {\sf P}$. If the size of ${\sf P}(x)$ is bounded by a polynomial function of $\kappa(x)$, then we say that that the compactor $({\sf C},{\sf E})$ is of polynomial size. Compactors can be seen as an attempt to formalize the notion of preprocessing for counting problems.
Fichier principal
Vignette du fichier
mjserna.pdf (420.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03093911 , version 1 (22-10-2021)

Identifiants

Citer

Dimitrios M. Thilikos. Compactors for parameterized counting problems. Computer Science Review, 2021, 39, pp.100344. ⟨10.1016/j.cosrev.2020.100344⟩. ⟨hal-03093911⟩
99 Consultations
218 Téléchargements

Altmetric

Partager

More