
HAL Id: hal-03093911
https://hal.science/hal-03093911v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compactors for parameterized counting problems
Dimitrios M. Thilikos

To cite this version:
Dimitrios M. Thilikos. Compactors for parameterized counting problems. Computer Science Review,
2021, 39, pp.100344. �10.1016/j.cosrev.2020.100344�. �hal-03093911�

https://hal.science/hal-03093911v1
https://hal.archives-ouvertes.fr


Compactors for Parameterized Counting Problems

Dimitrios M. Thilikos∗

LIRMM, Univ Montpellier, CNRS, Montpellier, France.

Abstract

The concept of compactor has been introduced in [Eun Jung Kim, Maria J.
Serna, and Dimitrios M. Thilikos. Data-compression for parametrized count-
ing problems on sparse graphs. ISAAC 2018, LIPIcs Vol. 123:20:1–20:13 ] as
a general data-reduction concept for parametrized counting problems. For a
function F : Σ∗ → N and a parameterization κ : Σ∗ → N, a compactor (C,E)
consists of a polynomial-time computable function P, called condenser, and
a computable function M, called extractor, such that F = M ◦ P. If the size
of P(x) is bounded by a polynomial function of κ(x), then we say that that
the compactor (C,E) is of polynomial size. Compactors can be seen as an
attempt to formalize the notion of preprocessing for counting problems.

Keywords: Parameterized algorithms, counting algorithms, compactor,
Graph Algorithms

P
arameterized complexity was introduced as a multi-variable frame-
work for dealing with the inherent complexity of computational prob-
lems. It was invented by Downey and Fellows in their pioneer work

in [34, 35, 33, 1] and currently constitutes a fully developed discipline of
Theoretical Computer Science (see [22, 41, 59, 36] for related textbooks).
Parametrized complexity proposed a refined analysis of computational prob-
lems. The idea is to study computational problems as “bivariate entities”:
apart from the input size, say n, we consider as a second variable a parameter
k that measures certain characteristics of the input. The general question is
whether a problem parameterization is fixed parameter tractable, i.e., it can
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be solved by an algorithm running in time f(k) · nO(1) or, in other words, it
admits a uniformly polynomial algorithm for every fixed value of the param-
eter k. This multi-variate complexity theory provides a more precise view on
problem complexity and offers additional tools to deal with their hardness.

Parameterized complexity also offered a theoretical base for the formaliza-
tion of the notion of preprocessing. A well-studied concept of data-reduction
in parameterized complexity is kernelization. A kernelization algorithm is
a polynomial-time algorithmic reduction of a problem to itself so that the
new instances have size that depends exclusively on the parameter. When
this function is polynomial, then we have a polynomial kernel. A polynomial
kernelization permits a significant data-reduction of the problem instances.
That way, a polynomial kernel, provides a preprocessing of computationally
hard problems that enables the application of exact algorithmic approaches
(however still super-polynomial) on significantly reduced instances. Kernel-
ization has been extensively studied in parametrized complexity and offered
polynomial kernels for a large variety of problems (see [46] for a recent text-
book on this subject).

A, relatively small, part of the research on parameterized computation
has been focused to the study of parameterized counting problems [40, 56,
4, 16, 19, 18, 17, 15, 14, 21, 20, 6, 9, 57, 52, 51]. Moreover, even less effort
has been done for the definition and study of data-reduction concepts for
parameterized counting problems. The purpose of this survey is to present
the notion of a compactor, formally introduced in [54], as an algorithmic
paradigm of data-reduction for parameterized counting problems[66, 67, 27,
29, 60].

Our presentation is intended to be self-contained. We provide in Sec-
tion 1 the formal definitions of a parameterized (counting) problem and the
notions of FPT-algorithm and kernelization algorithm. We also provide a
series of working examples of parameterized (counting) problems on graphs.
In Section 2 we give the formal definition of a compactor and present ear-
lier results on data-reduction schemes for parameterized counting problems.
Finally, Section 3 contains a general algorithmic meta-theorem on the auto-
mated derivation of a compactor that has recently appeared in [54] and is
based on earlier meta-algorithmic results in [7, 45, 44, 53].
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1. General context

This section contains the definition of all combinatorial and algorithmic
concepts that are necessary in order to present the results of this paper. We
use notation N in order to denote the set of non-negative integers. Also, we
set N+ = N \ {0} and we denote by poly the set of all polynomials.

1.1. Some definitions on graphs.

Many interesting computational problems can be stated with the help of
graphs. All graphs in this paper are undirected, simple, and finite. Given
a graph G = (V,E), we denote V (G) = V and E(G) = E. Given some S ⊆
V (G), we denote by G\S the graph obtained if we remove from G the vertices
in S, along with their incident edges. We also denote G[S] = G \ (V (G) \ S)
and we call G[S] the subgraph of G induced by S. If G′ is a graph where
V (G′) ⊆ V (G) and E(G′) ⊆ E(G[V (G′)]) the we say that G′ is a subgraph
of G. We define the closed neighborhood of S in G, denoted by NG[S], as
the set of all endpoints of edges containing some vertex in S as endpoint.
The open neighborhood of S in G is defined as NG(S) := NG[S] \ S. Given a
vertex v ∈ V (G) we set NG(v) := NG({v}). We call NG(v) the neighborhood
of v in G and we call the vertices of NG(v) the neighbors of v in G. We
define the degree of a vertex v in a graph G by degG(v) := |NG(v)| and we
set ∆(G) = max{degG(v) | v ∈ V (G)}. Given a d ∈ N, we recursively define

Nd
G[S] := NG[Nd−1

G (S)], starting from N
(0)
G (S) := S (notice that N

(1)
G (S) =

NG(S)). We denote
(
V (G)
k

)
= {S | S ⊆ V (G) and |S| = k} and we use G for

the set of all graphs.
A graph G on n vertices is connected if for every v ∈ V (G), Nn−1

G ({v}) =
V (G). A cycle of G is any connected subgraph of G with all its vertices of
degree 2. We say that a graph is acyclic if it does not contain any cycle as
a subgraph. A path P in G is any acyclic connected subgraph with at most
two vertices of degree 1; such vertices are called the endpoints of G. We use
Kr, r ∈ N+ to denote the complete graph on r vertices.

We consider two general families of graph classes based on the minor and
the topological minor relations. Given two graphs G1 and G2, we say that G1

is a minor of G2 if G1 can occur from some subgraph of G2 after contracting
edges. Also we say that G1 is a topological minor of G2 if G2 contains as a
subgraph some subdivision1 of G1. Given a finite set of graphs H, we denote

1A subdivision of a graph H is any graph obtained from H after replacing edges with
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by MH the set of all graphs excluding all the graphs in H as a minor an by
TH the set of all graphs excluding all the graphs in H as a topological minor.
We use P for the class of planar graphs, i.e., P := T{K3,3,K5} (that is also
equal to M{K3,3,K5}). Given a graph G and a set S ⊆ V (G), we say that S
is a planarizer of G if G \ S ∈ P .

1.2. Parameterized problems

We see a decision problem as a language L ⊆ Σ∗. Here, Σ is an al-
phabet that is used to encode the instances of the problem L. A problem
parameterization is a function κ : Σ∗ → N, i.e., a mapping assigning a non-
negative integer to each problem instance. A parameterized problem is a pair
Π = (L, κ) where L is a problem and κ is a problem parameterization.

Parameterized problems on Graphs.. An annotated graph is a pair (G,A)
where G is a graph and A ⊆ V (G). Given a set A of annotated graphs and
a class of graphs Z ⊆ G, we define the restriction of A to Z by A e Z =
{(G,S) | (G,S) ∈ A ∧ G ∈ Z}. We define the function FA : G × N → N so
that

FA(G, k) = |{S | (G,S) ∈ A and |S| = k}|. (1)

In other words, FA(G, k) counts the members of
(
V (G)
k

)
that together with G

form an annotated graph in A. We consider the following general parame-
terized problem.

ΠA
Instance: a graph G and a k ∈ N.
Parameter: k.
Question: FA(G, k) > 0?

The above parameterized problem can be seen as the pair ΠA = (LA, κ)
where

LA = {〈G, k〉 | FA(G, k) > 0} and κ(〈G, k〉) = k.

Recall that 〈G, k〉 encodes both the graph G and the integer k in the alphabet
Σ. From now now, whenever we refer to a parameterized problem on graphs

paths on the same endpoints.
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we use n for the number of vertices of the input graph and we measure
the complexity of an algorithm for this problem as a function of n and the
parameter k. We can define the restriction of a parameterized poblem ΠA to
some graph class Z by setting ΠA e Z := ΠAeZ

The definition of ΠA encompases several parameterized problems on graphs.
We give a series of examples of such problems.

• p-Vertex Cover: Πvc := ΠAvc where Avc = {(G,S) | E(G\S) = ∅)}.

• p-Feedback Vertex Set: Πfvs := ΠAfvs
where Avc = {(G,S) | G \

S is acyclic}.

• p-Dominating set: Πds := ΠAds
where Ads = {(G,S) | V (G) =

NG[S]}.

• p-Cycle Domination, is Πcd := ΠAcd
where Acd = {(G,S) | G \

NG[S] is acyclic}.

• p-Independent set: Πis := ΠAis
where Ais = {(G,S) | E(G[S]) = ∅}.

• p-Longest Cycle, is Πlc := ΠAlc
where Alc = {(G,S) | G[S] has a

cycle on |S| vertices

In the notation of the above problems, the prefix “p-” is used to denote
that we consider a parameterized problem with the standard parameteriza-
tion κ(〈G, k〉) = k.

Problem variants.. Recall that, in the definition of F in (1), we count sets

of size exactly k. Alternatively, we define F
(≤)
A or F

(≥)
A by considering in (1)

sets of size ≥ k or ≤ k, respectively. That way we may define different
parameterized problems, denoted by Π

(≤)
A and Π

(≥)
A .

Notice that Π
(≤)
• = Π• when • ∈ {vc, vfs, ds, cd}. The reason for this is

that A• is anti-monotone: if (G,S) ∈ A• and S ′ ⊇ S, then (G,S ′) ∈ A•. On
the other side Ais is monotone: if (G,S) ∈ Ais and S ′ ⊆ S, then (G,S ′) ∈
Ais and this implies that Π

(≤)
is is a trivial problem (every instance is a yes-

instance). Notice that Alc is neither monotone or anti-monotone. Π
(≤)
lc is

different than Πlc as yes-instances of Πlc are also a yes-instances of Π
(≤)
lc but

not vice-versa.
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Notice now that, because of the anti-monotonicity of A• when • ∈ {vc,vfs,
ds,cd}, Π

(≥)
• is trivial (the answer is always is yes). On the other side, Πis =

Π
(≥)
is because of the monotonicity ofAis. Finally, observe that Π

(≥)
lc is different

from both Π
(≤)
lc and Πlc.

Parameterized algorithms.. Let Π = (L, κ) be a parameterized problem. We
say that Π is fixed parameter tractable if there exists a function f : N → N
and an algorithm (called FPT-algorithm) that, with input x ∈ Σ∗, outputs
whether x ∈ L in f(κ(x)) · nO(1) steps. The parameterized complexity class
FPT is defined as the class of all parameterized problems that are fixed pa-
rameter tractable. The central question in Parameterized Complexity is to
classify parameterized problems in the class FPT or to provide evidence (or
proof) that this is not possible. For example, it is known that Πvc ∈ FPT and
the best, so far, FPT-algorithm for proving this, runs in O(1.2738k + k · n)
steps [12]. On the negative side, there is a hierarchy of parameterized com-
plexity classes, known as the W-hierarchy, as well as appropriate parameter-
ized reductions, that permit the proof of hardness results. For example, it is
known that Πds, Πcd, and Πis are W[2]-complete, implying that the existence
of an FPT-algorithm for p-Dominating Set or p-Cycle Domination or
p-Independent Set is highly unexpected. On the other side, if we restrict
these three problems to the class of planar graphs then they become fixed
parameter tractable, i.e., ΠdseP ∈ FPT, ΠcdeP ∈ FPT, and ΠiseP ∈ FPT.
Finally, Πfvs and Πlc belong both to FPT.

Kernelization. Let Π = (L, κ) be a parameterized problem. A kernelization
algorithm (or simply a kernelization) for Π is a polynomial-time computable
function A : Σ∗ → Σ∗ such that

• ∀x ∈ Σ∗ x ∈ L ⇐⇒ A(x) ∈ L (i.e., x and A(x) are equivalent
instances of L) and

• there exists a computable function s : N→ N such that ∀x ∈ Σ∗ |A(x)| ≤
s(κ(x)).

We call the function s the size of the kernelization A. If s ∈ poly we say that
A is a polynomial-size kernelization for Π.

It is known that every parameterized problem that is in FPT admits a
kernelization and vice versa. However, it is not always the case that there
is a kernelization of polynomial size. A central question of parameterized
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computation is to distinguish which problems in FPT have kernelizations of
polynomial size and which do not. For example, Πvc, Πds e P , Πcd e P , and
Πis e P have kernelizations whose size is a linear function of k = κ(x) (see
e.g., [58, 11, 46]), while Πvfs has a kernelization of quadratic size due to [65].
On the negative side, the problem Πlc, while being in FPT(actually even
the problem Πlc e P) is not expected to have a kernelization of polynomial
size [46].

1.3. Parameterized counting problems

A counting problem is a function F : Σ∗ → N for which there is a binary
relation R ⊆ Σ∗ × Σ∗ such that ∀x ∈ Σ∗, F (x) = |{y | (x, y) ∈ R}|.

Following the parameterization idea, we define a parameterized counting
problem as a pair (F, κ) where F : Σ∗ → N is a counting problem and
κ : Σ∗ → N is a problem parameterization.

If, in the definition of ΠA, we ask as an answer the value of FA(G, k),
then we define a parameterized counting problem that we denote by #ΠA.
Formally, #ΠA = (FA, κ) where κ(〈G, k〉) = k. To see #ΠA as a counting
problem, we consider the relation RA ⊆ Σ∗ × Σ∗ where (x, y) ∈ RA if and
only if x = 〈G, k〉 and y = 〈S〉, where S ∈

(
V (G)
k

)
and (G,S) ∈ A. Clearly,

FA(G, k) = |{y | (x, y) ∈ RA}|.
Given a parameterized counting problem #Π = (F, κ), we say that #Π ∈

#FPT if the function F is computable in f(κ(x)) · nO(1) steps. At this point
we have to stress that, when evaluating the running time, we adopt the
standard Uniform Cost Measure (UCM) model where all basic arithmetic
computations are carried out in constant time and we assume that numerical
values that are produced during the execution of the algorithm can be stored
in constant space [2].

We may also define the variants #Π
(≤)
A = (F≤kA , κ) and #Π

(≥)
A = (F

(≥k)
A , κ).

Notice that if A is anti-monotone, then #Π
(≤)
A ∈ FPT ⇐⇒ #ΠA ∈ FPT.

To see this, notice that F
(≤k)
A (G, k) =

∑
i∈{0,...,k} FA(G, i), while FA(G, k) =

F
(≤)
A (G, k) − F

(≤)
A (G, k − 1), when k ≥ 1. Interestingly, this situation is

not symmetric for #Π
(≥)
A when A is monotone. The fact that FA(G, k) =

F
(≥)
A (G, k) − F≥A (G, k + 1) implies that #Π

(≥)
A ∈ FPT ⇒ #ΠA ∈ FPT

however the fact that F
(≥)
A (G, k) =

∑
i∈{k,...,n} FA(G, i) does not imply that

#ΠA ∈ FPT⇒ #Π
(≥)
A ∈ FPT.
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1.4. An FPT-algorithm for #p-Vertex Cover

We next give an example of an easy algorithm for the #p-Vertex Cover
problem (i.e. the problem #Πvc).

Suppose that (G, k) is an instance of #Πvc. A high-degree vertex for
(G, k) is a vertex v of G with more than k neighbors. Observe that if v is a
high-degee vertex for (G, k), then v should be a member of every vertex cover
of G of size k, therefore FAvc(G, k) = FAvc(G \ {v}, k − 1). By repetitively
applying this reduction, we are able to reduce, in polynomial-time, the initial
instance (G, k) of the problem to a new one, say (G′, k′), where FAvc(G, k) =
FAvc(G

′, k′) and such that ∆(G′) ≤ k′ ≤ k. Let now I be the set of isolated
vertices of G′. Let G′′ be the graph obtained if we discard from G′ min{0, |I|−
k} vertices from I. We denote by z the number of discarded vertices. Because
no more than k vertices from I can participate to a vertex cover of G′ of
size k, it follows that (G′′, k′) and (G, k) are equivalent instances of Πvc.
Moreover, it can be easily proved that |V (G′′)| ≤ k2 +2 ·k and |E(G′′)| ≤ k2,
therefore the above reduction procedure can be seen as a polynomial size
kernelization for the decision problem Πvc. This kernelization is known as
Buss’ kernelization [10] and has extensively been studied (and extended) in
the context of kernelization algorithms.

Recall that our purpose is to design an algorithm for the counting problem
#Πvc. For this, is enough to observe that that

FAvc(G
′, k′) =

∑
i∈{0,...,k}

FAvc(G
′′, i) ·

(
z

k′ − i

)
(2)

This means that the right part of (2) can be computed by enumerating all
subsets of V (G′′) of size i ∈ {0, . . . , k}. As |V (G′′)| ≤ k2+2·k, we need to con-

sider, for each i ∈ {1, . . . , k}, at most
(
k2+2·k

i

)
subsets of V (G′′). Therefore,

given G′′, k′, and z, we can compute FAvc(G
′, k′), and therefore FAvc(G, k)

as well, in 2O(k2) steps. This implies that FAvc(G, k) can be computed in
2O(k2) + |V (G)|O(1) steps. Therefore, #Πvc ∈ #FPT.

The above algorithm can be easily adapted for #Π
(≤k)
vc and also for #Π

(≥k)
vc

by using inclusion-exclusion arguments.

2. Compactors for counting problems

In this section we give the definition of the concept of compactor as this
recently appeared in [54]. We also fit in this framework previous results on
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data-reduction for parameterized counting problems.

2.1. Compactors

Notice that the FPT-algorithm for #p-Vertex Cover in Subsection 1.4
has a flavor of preprocessing similar to that of the kernelization for its de-
cision counterpart. The preprocessing step computes, in polynomial-time,
the graph G′′ and the number z and then, based on G′′ and z, the value
of FAvc(G, k) can be computed in 2O(k2) steps. Our intention is to fit this
in a more general framework. For this, we give the formal definitions of
a compactor as a possible formalization of the notion of preprocessing and
data-reduction for counting problems.

Let (F, κ) be a parameterized counting problem. A compactor for (F, κ)
is a pair (C,E) where

• C : Σ∗ → Σ∗ is a polynomially computable function, called an con-
denser,

• E : Σ∗ → N is a computable function, called a extractor,

• F = E ◦ C, i.e., ∀x ∈ Σ∗, F (x) = (E ◦ C)(x), and

• there is a computable function s : N → N where ∀x ∈ Σ∗ |C(x)| ≤
s(κ(x)).

We call the function s size of the compactor (C,E) and, if s ∈ poly, we
say that (C,E) is a polynomial-size compactor for (F, κ). We call the running
time of the algorithm computing C, measured as a function of |x|, condensing
time of (C,E). We also call the running time of the algorithm computing E,
measured as a function of the parameter κ(x), extracting time of (C,E).

Recall that for parameterized decision problems, FPT-membership is equiv-
alent to the existence of a kenrelization. Interestingly, the same holds for pa-
rameterized counting problems when we replace kernelization by compactor.

Lemma 1 ([54]). A parameterized counting problem has an FPT-algorithm
if and only if there is a compactor for it.

Proof. Let (F, κ) be a parameterized counting problem. Suppose that an
algorithm A computes F (x) in time f(κ(x))|x|O(1) for every input x ∈ Σ∗.
We define the condenser C as the function

C(x) =

{
F (x) if |x| > f(κ(x))

x otherwise.
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Cleary, C(x) can be computed in polynomial-time since, if |x| > f(κ(x)), then
one can compute F (x) using algorithm A in time f(κ(x))|x|O(1) = |x|O(1).
Furthermore, C(x) has length at most f(κ(x)). For the extractor E, we define
the image of z = C(x) as

E(z) =

{
z if z is a numerical value

F (z) otherwise.

Note that the function E can be computed; in particular F (z) can be com-
puted by algorithm A. Clearly, we have F = E ◦ C and (C,E) is a compactor
for (F, κ).

Conversely, let (C,E) be a compactor for (F, κ) and let the function s be
the size of the compactor. For every input x ∈ Σ∗, we can run an algorithm
in time O(|x|O(1)) to compute C(x) and an algorithm in time g(|C(x)|) to
compute E(C(x)) = F (x). As |C(x)| ≤ s(κ(x)) and the function g can be
assumed to be non-decreasing, this computes F (x) in time O(|x|O(1) + (g ◦
s ◦ κ)(x)).

Let’s try now to fit the previous algorithm for #p-Vertex Cover prob-
lem to the setting of a compactor. The condenser C : Σ∗ → Σ∗ recieves
as input the instance x = 〈G, k〉 and outputs the triple C(x) = 〈G′, k′, s〉.
Also the extractor is the algorithm that, given z = 〈G′, k′, s〉 evaluates (2) in
2O(k2) steps. We have that FAvc(x) = E(z) = (E ◦C)(x). As |G′| = O(k2) and
the numbers k′ and s are stored in constant space, we have that |C(x)| =
O(k2) = O((κ(x))2), therefore (C,E) is a compactor of quadratic size.

2.2. Some (pre)history

We now give some examples of parameterized counting problems where
FPT-algorithms have been obtained by making use of data-reduction tech-
niques that can be interpreted as compactor algorithms.

Counting list H-colorings.. The first trace of a data-reduction algorihm for
counting parameterized problems appeared in [27, 29]. Let (H,C) be a pair
where H is a fixed graph that may have loops, C ⊆ V (H), and consider the
following counting parameterized problem.
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#List (H,C)-coloring
Instance: a graph G, a function L : V (G) → 2V (H), and a function
K : C → N.
Parameter: k := Σa∈CK(a).
Question: the number of different functions χ : V (G)→ V (H) such that

1. for every edge {v, u} of G, {χ(v), χ(u)} is an edge of H.

2. for every v ∈ V (G), χ(v) ∈ L(u)

3. for every a ∈ C, |χ−1(a)| = K(a).

The function L assigns to each vertex of G a list of vertices of H. Also the
function K can be seen as a partial weighting of H on the vertices of C.
Condition (1) demands that χ is an H-coloring of G, i.e., a coloring of G
by the vertices of H so that every edge of G is mapped to an edge of H.
Condition (2) demands that each H-coloring χ is a list H-coloring where the
color assigned to the vertices of G respect the list L. Lastly, Condition (3),
demands that the number of vertices of G that are colored by a vertex a of C
is equal to the weight, according to K, of vertex a. List (H,C)-coloring
can be seen as a general parameterization of the List H-coloring problem,
whose complexity has been determined in [28] (see also [31, 32, 30]). If one
insists to express the List (H,C)-coloring using the general formalism
that we adapted for counting parameterized problems, we can see it as the
pair #Π(H,C) = (F(H,C), κ(H,C)) where

F(H,C)(〈G,L,K〉) = |{χ : V (G)→ V (H) | (1)–(3) hold}| and

κ(H,C)(〈G,L,K〉) = Σa∈CK(a).

In [27, 29] it is proved that if E(H \ C) 6= ∅ or H is a reflexive clique
or H is a complete bipartite graph, then #Π(H,C) ∈ #FPT. The proof

strategy in [27, 29] was to construct a new graph G̃, called tribal graph, on
2O(k+|H|) vertices and reduce the problem of counting list (H,C)-colorings on
G to the problem of enumerating list (H,C)-colorings on G̃. The authors
of [27, 29] called this technique compactor enumeration, to stress the fact
that the tribal graph G̃ contains a certificate for each class in a suitable
partition of the solution space of the initial problem. The graph G̃ plus some
adequate numeric information storing the correspondence between solutions
on G̃ (specified in [27, 29]) and classes of solutions in G can be seen as a
compactor of size 2O(k+|H|).
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Another example of a parameterized counting problem, for which #FPT-
membership was proved using the compactor enumeration technique, ap-
peared in [60]. Let p, r ∈ N+ and let let P be some fixed collection of graphs
each of no more than p vertices. We consider the following general problem.

#Minimum r-Covering by Graphs in P (in short #MCG(r,P))
Instance: a graph G, and a k ∈ N.
Parameter: k.
Question: the number of collections C of k different subgraphs of G such
that

1. each graph in C is a graph in P and

2. each connected component of G \
⋃
H∈C V (H) has size at most r.

If in the conditions of the above problem we add a third one demanding that
the graphs in C are pairwise disjoint, then we define the problem #Minimum
r-Maximal Matching by Graphs in P (in short #MMM(r,P)).
#MCG(r,P) can be seen as a generalization of the the #p-Vertex Cover
problem. To see this, take P = {K1} and r = 1. Also, #MMM(r,P) can
be seen as a generalization of the the #p-Minimum Maximal Matching
problem (take P = {K2} and r = 1). According to [60], both #MCG(r,P)
and #MMM(r,P) belong to #FPT because of FPT-algorithms running in
O(n · r(pk+ r) + 2O(pkr(pk+r))) steps. The approach of [60] builds a subgraph
G′ of G on 2O(r(pk+r)) vertices. Moreover, the vertices of G′ are equipped
with some extra numeric information on the number of possible solutions
of the initial instance that they represent. G′ along with the accompanying
information can be seen as a compactor of size 2O(r(pk+r)) that permits, by
enumerating all solutions in G′, to reproduce the number of solutions in G.

Both examples of this subsection can be seen as vast extensions of Buss’
algorithm. However, the generality of these two problems does not lead to
a polynomial size compactor while the algorithm Subsection 1.4 can indeed
be seen as a compactor for #p-Vertex Cover of quadratic size. Moreover,
the technique of compactor enumeration as presented in [27, 29] and [60] was
not accompanied by the explicit definition of a data-reduction concept where,
on the top of this, one could also demand that the reduced instances are of
polynomial size. As a viable alternative to that, Marc Thurley introduced,
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for the first time in [66, 67], a formal notion of counting kernelization and
gave counting kernels for a for a series of parameterized counting problems,
such as #p-Vertex Cover, #card-p-Hitting Set, #p-Unique Hitting
Set. We prefer not give the definition of counting kernelization or/and make
a comparison between compactors and counting kernels as this is escapes the
purpose of this survey.

3. Algorithmic meta-theorems on compactors

Algorithmic meta-theorems typically provide general conditions for a prob-
lem to admit an efficient algorithm [49, 48, 55, 61]. Typically such conditions
are of logical and/or combinatorial nature. Important algorithmic meta-
theorems for parameterized problems concern model-checking for Monadic
Second Order Logic (MSOL) [13, 8, 3, 62] on bounded treewidth graphs
and model checking for First Order Logic (FOL) on certain classes of sparse
graphs [39, 47, 23, 38, 37, 50]. Typically, algorithmic meta-theorems en-
compass the abstraction of what makes a general idea applicable to many
problems and reveal deep relations between algorithm theory, logic, and com-
binatorics.

The purpose of this section is to present an algorithmic meta-theorem
(Theorem 3) on the existence of polynomial compactors for a wide family of
problems when they are restricted to sparse families of graphs. This theo-
rem appeared in [54] and builds on earlier meta-algorithmic techniques that
appeared in [7, 45, 44, 53]. We also present some applications of the main
result [54] to general families of problems.

3.1. Monadic Second Order Logic.

The syntax of Monadic Second Order Logic (MSO) on graphs includes
the logical connectives ∨, ∧, ¬, ↔, →, variables for vertices, edges, sets of
vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to these
variables and the following predicates:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. e ∈ D where e is an edge variable and D is an edge set variable;

3. e ( u where e is an edge variable, u is a vertex variable, and the
interpretation is that the edge e is incident with the vertex u;

4. u ∼ v where u and v are vertex variables and the interpretation is that
u and v are adjacent;
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5. equality (“=”) of variables representing vertices, edges, sets of vertices,
and sets of edges.

We consider MSOL-sentences with one free vertex-set variable. Given
such a sentence φ and an annotated graph (G,S), we write (G,S) |= φ in
order to denote that the pair (G,S) is a model for the sentence φ. We
correspond each such φ to a set of annotated graphs as follows

Aφ = {(G,A) | (G,A) |= φ}.

We write #Πφ = (Fφ, κ) as a shortcut for #ΠAφ = (FAφ , κ). We say that
an instance 〈G, k〉 of #Πφ is a null instance if Fφ(G, k) = 0, i.e., there is no

S ∈
(
V (G)
k

)
such that (G,S) |= φ. A parameterized counting problem #Π is

MSOL-expressible if there exists a MSOL-sentence with one free vertex-set
variable such that #Π = #Πφ.

We conclude this subsection by expressing some of the problems of Subsec-
tion 1.2 using MSOL-sentences. In the sentences below, symbols v, u, x, y, z
represent vertices, e represents an edge, and S, S ′ represent vertex sets.

• #p-Vertex Cover: #Πvc = #Πφvc where

φvc = ∀e ∃v (v ∈ S ∧ e( v).

• #p-Dominating Set: #Πpds = #Πφpds where

φpds = ∀v
(
v ∈ S ∨ (∃u u ∈ S ∧ v ∼ u)

)
• #p-Feedback Vertex Set: #Πfvs = #Πφfvs where

φfvs = ∀S ′ (cycl(S ′)→ ∃v v ∈ S ∧ v ∈ S ′) and

cycl(S ′) = ∀x
(
x ∈ S ′ → ∃y ∃z

(
y ∈ S ′ ∧ z ∈ S ′ ∧ ¬(x = y) ∧ ¬(x =

z) ∧ ¬(y = z) ∧ x ∼ y ∧ x ∼ z
))

, i.e., the predicate cycl(S ′) expresses

the fact that G[S ′] contains a cycle.

• #p-Cycle Domination: #Πcd = #Πφcd where

φcd = ∀S ′
(
cycl(S ′)→ ∃v

(
v ∈ S ∧ (v ∈ S ′ ∨ (∃u u ∼ v ∧ u ∈ S ′))

))
.
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• #p-Independent Set: #Πis = #Πφis where

φis = ∀e ¬(∃v ∃u (v ∈ S ∧ u ∈ S ∧ e( v ∧ e( u)).

We avoid the description of a MSOL-sentence for #p-Longest Cycle as
it is too technical.

Notice that the planar restriction of each of the above problems is also
MSOL-expressible, because planarity is a property that can be expressed by
a predicate in MSO logic. In general, if Z is a MSOL-expressible graph
class and Π is a MSOL-expressible problem, then Π e Z is also MSOL-
expressible [7]. Keep in mind that for every finite set of graphs H, bothMH
and TH are MSOL-expressible.

3.2. Treewidth-modulators

Treewidth.. Given a k ∈ N+, we say that a graph G is a k-tree if G is
isomorphic to Kk+1 or (recursively) there is a vertex v in G where NG[{v}]
isomorphic to Kk+1 and G \ {v} is a k-tree. The treewidth of a G is the
minimum k for which G is a subgraph of some k-tree.

Treewidth-modulators.. Given a graph G, we say that a vertex set S ⊆ V (G)
is a t-treewidth-modulator of G if the removal of S from G produces a graph
of treewidth at most t. Given an MSOL-sentence φ, we say that #Πφ is
treewidth-modulable if there is a constant t (depending on φ) such that, for
every non-null instance 〈G, k〉 of #Πφ, G has a t-treewidth-modulator of size
at most t · k. Clearly if #Πφ is treewidth-modulable then #Πφ e Z is also
treewidth-modulable, for every Z ⊆ G.

As an example, notice that #Πfvs (that is #p-Feedback Vertex set)
is trivially treewidth-modulable because if Fφfvs(G, k) 6= 0 then G contains
some subset S such that G\S is acyclic and S is a 1-treewidth-modulator of
G with k vertices (note that the acyclic graphs are exaclty those of treewidth
at most 1).

A general treewidth-modulable problem.. We now give a general family of
parameterized counting problems that are treewidth-modulable. Let H be a
finite set of graphs and d ∈ N. We define

AH,d = {(G,S) | G \N (d)
G (S) does not contains any graph in H as a minor}.
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As graph distance as well as the minor relation can be expressed in MSOL,
there is a φH,d such that #ΠφH,d = #ΠAH,d . For simplicity we denote
#ΠH,d := #ΠφH,d .

Notice that #ΠH,d is a quite general problem. For instance,

• #Π{K2},0 is the #p-Vertex Cover problem,

• #Π{K3},0 is the #p-Feedback Vertex Set problem,

• #Π{K5,K3,3},0 is the #p-Vertex Planarization problem, asking for
the number of planarizers of G of size k.

• #Π{K1},1 is the #p-Dominating Set problem while,

• for d ≥ 2, #Π{K1},d is the #p-d-Distance Domination problem2.

• #Π{K3},1 is the #p-Cycle Domination problem.

The proof of the next theorem appeared, in different forms, in [7, 43, 5,
53].

Theorem 1. If H is a set of finite connected graphs containing at least one
planar graph, then #ΠH,0 is treewidth-modulable.

The next theorem follows from the results of [43], taking into account
that if H contains at least one planar graph, then ΠH,d is contraction-
bidimensional, for every d ∈ N (see [26, 25, 42, 24, 64, 63] for surveys on
Bidimensionality Theory).

Theorem 2. If H is a set of finite connected graphs containing at least one
planar graph, C is a set of finite graphs containing at least one apex3 graph,
and d ∈ N, then #ΠH,d eMC is treewidth-modulable.

2The #p-d-Distance Domination problem is #ΠA(d)
ds

where A(d)
ds = {(G,S) | V (G) =

N
(d)
G [S]}.
3A graph G is an apex graph if it contains a planarizer of cardinality 1. Alternatively,

G is an apex graph if 〈G, 1〉 is a non-null instance of #Π{K5,K3,3},0.
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An algorithmic meta-theorem for counting parameterized problems.. The next
theorem is the main result in [54].

Theorem 3. For every finite set of graphs C and every counting parame-
terized problem #Π that is MSOL-expressible and treewidth-modulable, there
is a compactor for Π e TC of size O(k2) with condensing time O(k2n2) and
decoding time 2O(k).

As a corollary of the main theorem we have the following.

Corollary 1. For every finite set of graphs C and every counting parameter-
ized problem #Π that is MSOL-expressible and treewidth-modulable, there is
an FPT-algorithm that solves #Π e TC in O(k2n2) + 2O(k) steps.

In the above results, the constants hidden in the O-notation depend on
the MSOL-sentence expressing #Π, on the treewidth-modulability constant
t, and on the choice of C. The application of the above two results on the
treewidth-modulable instantiations of the general problem #ΠH,d implies the
following.

Corollary 2. Let H be a finite set of connected graphs containing at least
one planar graph, C be a finite set of graphs, and d ∈ N. Suppose also that

• Z :=MC and C contains at least one apex graph or

• Z := TC and d = 0.

Then there is a compactor for #ΠH,deZ of size O(k2) with condensing time
O(k2n2) and decoding time 2O(k). Moreover there is an FPT-algorithm that
solves #ΠH,d e Z in O(k2n2) + 2O(k) steps.
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