Analysis, improvement and limits of the multiscale Latin method - Archive ouverte HAL
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2021

Analysis, improvement and limits of the multiscale Latin method

Résumé

This work studies the convergence properties of the mixed non-overlapping domain decomposition method (DDM) commonly named "Latin method". As all DDM, the Latin method is sensitive to nearinterface heterogeneity and irregularity. Using a simple yet fresh point of view, we analyze the role of the Robin parameters as well as of the second level (coarse space) correction-which are a characteristic of the method. In particular, we show how to build a spectrum-motivated coarse space aiming at ensuring fast convergence. 2D and 3D linear elasticity problems involving highly heterogeneous materials confirm the robustness of the spectral coarse space and provide evidence of the scalability of the multiscale Latin method.
Fichier principal
Vignette du fichier
elsarticle-template.pdf (5.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03090960 , version 1 (30-12-2020)

Identifiants

Citer

Paul Oumaziz, Pierre Gosselet, Karin Saavedra, Nicolas Tardieu. Analysis, improvement and limits of the multiscale Latin method. Computer Methods in Applied Mechanics and Engineering, 2021, 384, pp.113955. ⟨10.1016/j.cma.2021.113955⟩. ⟨hal-03090960⟩

Altmetric

Partager

More