Article Dans Une Revue Energy and Buildings Année : 2019

Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers

Résumé

In the present work, the hygrothermal behavior of a wall structure made of a novel biobased material, i.e. date palm fiber reinforced concrete was investigated. In this context, a specific setup was developed which allows simulating a bi-climatic environment with separate outdoor and indoor environments. This device made it possible to apply various scenarios of static / dynamic hygrothermal loading to the outer side of wall, involving variation/cycling of temperature (T) and /or relative humidity (RH). During these experiments, resulting variations of T and RH across the wall thickness were monitored with in-situ sensors. Outstanding thermo-hygric phenomena were highlighted, such as high coupling effect between heat and moisture transfers, resulting from evaporation-condensation and sorption-desorption processes. Besides, significant thermal and hygric inertia was observed through the Date Palme Concrete (DPC) wall. The response time of this DPC wall to temperature variations remains shorter than in the case of humidity variations. Even so, large damping effect is obtained compared to outdoor boundary conditions, which make this DPC wall a good candidate for mitigating overheating during summertime and reducing interstitial condensation as well.
Fichier principal
Vignette du fichier
2) Chennouf et al Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers.pdf (1.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03088977 , version 1 (27-12-2020)

Identifiants

Citer

Nawal Chennouf, Boudjemaa Agoudjil, Tarek Alioua, Abderrahim Boudenne, Karim Benzarti. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy and Buildings, 2019, 202, pp.109413. ⟨10.1016/j.enbuild.2019.109413⟩. ⟨hal-03088977⟩
89 Consultations
201 Téléchargements

Altmetric

Partager

More