Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils - Archive ouverte HAL
Article Dans Une Revue Global Change Biology Année : 2021

Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils

1 CREA - Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria = Council for Agricultural Research and Economics
2 Biological Research Center [Hungarian Academy of Sciences]
3 UREP - Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR
4 University of Aberdeen
5 Fisica de Sistemas Pequenos, Consejo Superior de Investigaciones Cientificas
6 UNIMI - Università degli Studi di Milano = University of Milan
7 SLU - Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet
8 CNR - Consiglio Nazionale delle Ricerche [Bologna]
9 ECOSYS - Ecologie fonctionnelle et écotoxicologie des agroécosystèmes
10 LAE-Colmar - Laboratoire Agronomie et Environnement - Antenne Colmar
11 BioEcoAgro - UMR transfrontalière INRAe - UMRT1158
12 QUT - Queensland University of Technology [Brisbane]
13 CSU - Colorado State University [Fort Collins]
14 CODIR - Collège de Direction
15 Helmholtz-Gemeinschaft = Helmholtz Association
16 Manaaki Whenua – Landcare Research [Lincoln]
17 University of Ottawa [Ottawa]
18 LGENS - Laboratoire de géologie de l'ENS
19 LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette]
20 MOSAIC - Modélisation des Surfaces et Interfaces Continentales
21 UTAS - University of Tasmania [Hobart]
22 JKI - Julius Kühn-Institut - Federal Research Centre for Cultivated Plants
23 FMI - Finnish Meteorological Institute
24 CSIRO Energy Technology - Commonwealth Scientific and Industrial Research Organisation Energy Technology
25 SUB Göttingen - Göttingen State and University Library
26 ZALF - Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research
27 University of Potsdam = Universität Potsdam
28 FARE - Fractionnement des AgroRessources et Environnement
29 CSIC - Consejo Superior de Investigaciones Científicas [Spain]
30 BBSRC - Biotechnology and Biological Sciences Research Council
31 Aarhus University [Aarhus]
32 HU Berlin - Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin
Tommaso Stella

Résumé

Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge-based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin-up initialization of SOC. Changes in the multi-model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (+/- 15.5) Mg C/ha compared to the observed mean of 36.0 (+/- 19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 +/- 16.7 Mg C/ha) and Spe (36.8 +/- 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models
Fichier principal
Vignette du fichier
GCB-20-1834_Proof_fl.pdf (3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03081740 , version 1 (11-10-2021)

Identifiants

Citer

Roberta Farina, Renata Sándor, Mohamed Abdalla, Jorge Álvaro‐fuentes, Luca Bechini, et al.. Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils. Global Change Biology, 2021, 27 (4), pp.904-928. ⟨10.1111/gcb.15441⟩. ⟨hal-03081740⟩
520 Consultations
125 Téléchargements

Altmetric

Partager

More