Lissajous-toric knots - Archive ouverte HAL
Article Dans Une Revue Journal of Knot Theory and Its Ramifications Année : 2020

Lissajous-toric knots

Résumé

A point in the (N, q)-torus knot in R 3 goes q times along a vertical circle while this circle rotates N times around the vertical axis. In the Lissajous-toric knot K(N, q, p), the point goes along a vertical Lissajous curve (parametrized by t → (sin(qt + φ), cos(pt + ψ))) while this curve rotates N times around the vertical axis. Such a knot has a natural braid representation B N,q,p which we investigate here. If gcd(q, p) = 1, K(N, q, p) is ribbon; if gcd(q, p) = d > 1, B N,q,p is the dth power of a braid which closes in a ribbon knot. We give an upper bound for the 4-genus of K(N, q, p) in the spirit of the genus of torus knots; we also give examples of K(N, q, p)'s which are trivial knots.
Fichier principal
Vignette du fichier
Lissajous.toric.reviewed.version.september17.pdf (357.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03064345 , version 1 (15-12-2020)

Identifiants

Citer

Marc Soret, Marina Ville. Lissajous-toric knots. Journal of Knot Theory and Its Ramifications, 2020, 29 (01), pp.2050003. ⟨10.1142/S0218216520500030⟩. ⟨hal-03064345⟩
117 Consultations
132 Téléchargements

Altmetric

Partager

More