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Lissajous-toric knots

Marc Soret and Marina Ville

Abstract

A point in the (N, q)-torus knot in R3 goes q times along a vertical
circle while this circle rotates N times around the vertical axis. In
the Lissajous-toric knot K(N, q, p), the point goes along a vertical
Lissajous curve (parametrized by t 7→ (sin(qt+φ), cos(pt+ψ))) while
this curve rotates N times around the vertical axis. Such a knot has
a natural braid representation BN,q,p which we investigate here. If
gcd(q, p) = 1, K(N, q, p) is ribbon; if gcd(q, p) = d > 1, BN,q,p is the
d-th power of a braid which closes in a ribbon knot. We give an upper
bound for the 4-genus of K(N, q, p) in the spirit of the genus of torus
knots; we also give examples of K(N, q, p)’s which are trivial knots.

1 Introduction

We study a class of knots generalizing torus knots, which we call Lissajous-
toric: a torus knot is generated by a a circle rotating around an axis and a
Lissajous-toric knot is generated by a Lissajous curve rotating around the
axis. There are several ways of describing them.

1.1 Lissajous-toric knots: various points of view

1.1.1 A description in R3

We recall the description of the (N, q)-torus knot in R3 endowed with an
orthonormal frame Oxyz (see for example [Cr] 1.5). If Γ is the circle of
radius 1 centered at (0, 2, 0) in the yz plane, a point travelling along the
knot goes q times around Γ while Γ is rotated N times around the axis Oz.
In the case of the Lissajous-toric knots, we replace the vertical circle by a
vertical Lissajous curve: we take three integers N, q, p with (N, q) = (N, p) =
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1 and a real number φ, and we define a knot K(N, q, p, φ) as follows. Consider
the curve Cq,p,φ given in a vertical plane by

t ∈ [0, 2π] −→ R3

t 7→
(

2 + sin
(
qt
)
, 0, cos

(
p(t+ φ)

))
and rotate Cq,p,φ N times around the axis generated by (0, 0, 1). In Cartesian
coordinates, we write the knot as

(∗)


x =

(
2 + sin(qt)

)
cos(Nt)

y =
(
2 + sin(qt)

)
sin(Nt)

z = cos
(
p(t+ φ)

)
1.1.2 A description in the 3-dimensional cylinder

We write (*) above in cylindrical coordinates:
θ = Nt
ρ = 2 + sin(qt)
z = cos

(
p(t+ φ)

)
Thus K(N, q, p, φ) is a closed N -braid which we can write in the 3-cylinder
S1 × R2 as follows :

eit 7→
(
eNit, sin

(
qt
)
, cos

(
p(t+ φ)

))
(1)

Note the similarity with the (N, q)-torus knot which is written in the 3-sphere
or the 3-cylinder as

eit 7→ (
1√
2
eNit,

1√
2
eqit) (2)

1.1.3 Billiard curve in a solid torus

noeudLissajousEtToriqueB3,4,5Front.pdfnoeudLissajousEtToriqueK3,4,5Front.pdf

Figure 1: Perspective front view of knots B(3, 4, 5) and K(3, 4, 5)
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Just as Billiard curves are equivalent to Lissajous knots (cf. [JP]) Lissajous
toric knots are equivalent to billiard curves in a square solid torus, namely
a cube where the top and bottom have been identified; C. Lamm intro-
duced them in [La 1], see also the related [L-O]. Such billiard curves are
parametrized similarly to Lissajous toric knots; the trigonometric functions
are replaced by saw-tooth functions of the type g(t) := 2|t − [t] − 1

2
|. and

h(t) := t− [t].

C(N, p, q, φ) :

(
[0, 2π] −→ [−1, 1]3

t 7→
(
g(Nt), g

(
p(t+ φ)

)
, h(qt)

) ) (3)

C. Lamm noticed that these billiard curves in a solid torus do not depend
on the phase up to mirror transformation and stated that, if p and q are
mutually prime, the knot K(N, q, p) is ribbon.

1.1.4 Singularity knots of minimal surfaces

We first encountered the K(N, q, p, φ)’s in [S-V] when we studied the singu-
larities of minimal disks in R4; having noticed that their knot types do not
depend on the phase φ up to mirror transformation, we dropped the φ in the
notation.

We consider a minimal, i.e. conformal harmonic, map F : D −→ R4 where
D is the unit disk in C, with dF (0) = 0, i.e. F has a branch point at 0. If
moreover F is a topological embedding, we can copy Milnor’s construction of
algebraic knots ([Mi]) and take the intersection of F (D) with a small sphere
centered at F (0): we obtain a minimal knot. Complex curves are a special
case of minimal surfaces and the germ z 7→ (zN , zq) yields the (N, q)-torus
knot. In [S-V] the knots K(N, q, p, φ)’s came from germs of singularities of
the type

z 7→
(
Re(zN), Im(zN), Im(zq), Re(epiφzp)

)
(4)

with
N < p, q (5)

In [S-V] we called the K(N, q, p)’s simple minimal knots; in the present paper
we drop the assumption (5) and study these knots per se; Lissajous-toric is
a more appropriate name for the general case.
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1.2 Contents of the paper

In [S-V] we defined a braid BN,q,p naturally associated to the knot K(N, q, p);
we describe it here in much greater detail. We view BN,q,p as a collection of
graphs of N functions from [η, 1 + η] to R2; the purpose of the small positive
number η is to avoid crossing points at the endpoints of the interval.

diatre344.pdf

Figure 2: Braid shadow of B(5, q, p)

We prove in §4.1 below

Proposition 1. Let d = gcd(p, q), q̃ = q
d
, p̃ = p

d
; then

BN,q,p = Bd
N,q̃,p̃ (6)

Since q̃ and p̃ are mutually prime and since the knot type does not change
if we interchange p and q, we make the

Assumption 1. The numbers p and q are mutually prime and q is odd.

In §2, we construct two braids αN,q,p and βN,q,p of the form

αN,q,p =
∏

2≤2k≤N−1

σ±2k βN,q,p =
∏

1≤2k+1≤N−1

σ±2k+1 (7)

where the σi’s are the standard generators of the braid group BN and the
exponents ±1 of the σi’s appearing in α and β are given by simple formulae
in N, q, p.
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We will state below the Main Theorem which expresses the braid BN,q,p

as a product of the braids αN,q,p, α
−1
N,q,p, βN,q,p and β−1N,q,p as follows :

BN,q,p = QN,q,pαN,q,pQ
−1
N,q,pβN,q,p (8)

where the N -braid QN,q,p is also a product of α±1N,q,p’s and β±1N,q,p’s. We il-
lustrate the Main Theorem in §3 by going through the examples we gave in
[S-V] and we prove it in §4.

In the rest of the paper, we drop the Assumption 1 and study the topology
of the knot. In §5.1, we reprove a theorem of Lamm:

Theorem 1. If p and q are mutually prime, the knot K(N, q, p) is ribbon.

Corollary 1. If d = gcd(p, q) > 1, the knot K(N, q, p) is periodic and its
braid is the d-th power of a braid which closes in a ribbon knot.

Theorem 2. If d = gcd(p, q), the four-genus of K(N, q, p) verifies

g4(K(N, q, p)) ≤ (N − 1)(d− 1)

2
. (9)

Remark 1. The right-hand side of (9) is the genus of the K(N, d)-torus knot
(cf. [K-M]).

Remark 2. The inequality (9) can be strict: for example the knot K(3, 5, 10)
is 10123 which is slice.

There is one case where we know that (9) is an equality:

Proposition 2. Let N, q, p be positive integers with (N, q) = (N, p) = 1,
d = gcg(q, p) and let

p̃ =
p

d
q̃ =

q

d
(10)

If p̃+ q̃ ≡ 0 (2N) or p̃− q̃ ≡ 0 (2N) (11)

the knot K(N, q, p) is represented by a quasipositive braid and its 4-genus is

g4
(
K(N, q, p)

)
=

(N − 1)(d− 1)

2
(12)
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Finally, replacing t by t+π in the expression of K(N, q, p) given in §1.1.1
yields

Proposition 3. If p and q have different parities (and thus N is odd), then
K(N, q, p) is preserved by the involution

(x, y, z) 7→ (−x,−y,−z).

Hence it is positive strongly amphicheiral.

Some of the K(N, q, p)’s are actually trivial knots; in §6 show:

Proposition 4. If N and q are mutually prime, the knots K(N, q, q + N),
K(N, q, 1), K(N, q, 2Nq + 1) and K(N, q, 2Nq − 1) are trivial.

Can we get all the trivial K(N, q, p)’s this way? We did computer sim-
ulations using the braid software from the Liverpool knot group ([br]) and
KnotPlot ([KP]): they told us that in some cases (the K(4, 5, .)’s for exam-
ple) the answer is yes but in most cases the answer is no (see the lists of
Jones polynomials at the end of the paper).

Acknowledgment

We are grateful to Moshe Cohen whose stimulating conversation prompted
us to embark on this work.

2 The structure of a simple minimal braid

2.1 Overview

Here is an informal description of the contents of the Main Theorem.

There are 2q values of t in [η, 1 + η] (we call them crossing values) above
which two or more of the N graphs forming BN,q,p meet (at crossing points)
and the data of all these crossing points make up the braid (see Figure 2);
above each of the crossing values t’s, the generators of the braid group BN

describing the corresponding crossing points are all even (i.e. of the form
σ±12k ) or all odd (i.e. of the form σ±12k+1).
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The set of crossing points of BN,q,p above a crossing value t can be represented
by one of the braids: αN,q,p, α

−1
N,q,p, βN,q,p or β−1N,q,p which were introduced in

formula (7); thus BN,q,p is a product of the αN,q,p’s and βN,q,p’s and of their
inverses.
We order the 2q crossing values t1 < t2 < ... < tq < ... < t2q. Going from
tk to tk+1 changes α±1N,q,p into β±1N,q,p or vice-versa. A formula gives us the
exponent +1 or −1 of the αN,q,p or βN,q,p above a given crossing point tk in
terms only of N, q, p and k.
Finally we notice that, if we have an αN,q,p (resp. α−1N,q,p, βN,q,p, β

−1
N,q,p) for

tk (with k 6= q), we have a α−1N,q,p (resp. αN,q,p, β
−1
N,q,p, βN,q,p) for t2q−k: this

explains the presence of QN,q,p and Q−1N,q,p in the product (8).

2.2 Statement of the structure theorem

Main Theorem. Let N, p, q be three integers such that q is odd and (p, q) =
(N, q) = (N, p) = 1; and let A, B two integers such that

2NA+Bq = 1 (13)

For i ∈ {1, ..., N − 1}, we let

εN,q,p(i) = (−1)[
pBi
N

] (14)

where [ ] denotes the integral part and we define

αN,q,p =
∏

2≤2i≤N−1

σ
εN,q,p(2i)
2i βN,q,p =

∏
1≤2i+1≤N−1

σ
εN,q,p(2i+1)
2i+1 (15)

For k ∈ {1, ..., 2q}, k 6= q, k 6= 2q, we let

λN,q,p(k) = (−1)[
2Apk
q

] (16)

Up to mirror transformation, the knot K(N, q, p) is represented by the braid

BN,q,p = α
λ(1)
N,q,pβ

λ(2)
N,q,p...α

λ(q−2)
N,q,p β

λ(q−1)
N,q,p︸ ︷︷ ︸

QN,q,p

αN,q,p β
−λ(q−1)
N,q,p α

−λ(q−2)
N,q,p ...β

−λ(2)
N,q,p α

−λ(1)
N,q,p︸ ︷︷ ︸

Q−1
N,q,p

βN,q,p

(17)
The k-th factor in this expression corresponds to the k-th crossing value tk.
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Notice that the arithmetic formulae (14) and (16) can be written in terms
of the Conway sign:

Definition 1. ([Co]) If m and n are two integers, n is said to be positive
(resp. negative) modulo m if n is congruent to an integer inside (0, m

2
) (resp.

(0,−m
2

)).

3 Illustrations and examples

In this section we go through the examples featured in [S-V] and we write
their braid using the terminology of the Main Theorem.
We define three permutations of the crossing values tk, k ∈ {1, . . . , 2q} and
their corresponding action on the blocks α and β :

T (k) = k + q, S(k) = 2q − k,R(k) = q − k
T : α 7→ β, β 7→ α
S : α 7→ α−1, β 7→ β−1

R : α 7→ β−1, β 7→ α−1

(18)

Since it is clear in each case of the following list what the N, q, p are, we
dropped the indices N, q, p.

• N = 3, q = 4, p = 5: square knot 31#3̄1

Qσ−12 Q−1σ1 where Q = σ2σ
−1
1 σ−12 σ1

• N = 3, q = 4, p = 7: trivial knot

Qσ2Q
−1σ−11 where Q = (σ−12 σ−11 σ−12 )2

• N = 3, q = 4, p = 10: figure eight knot

B3,4,10 = B2
3,2,5 = (Qσ2Q

−1σ−11 )2 where Q = σ2σ1σ2σ1

• N = 3, q = 5, p = 7: 10155

Qσ−12 Q−1σ−11 where Q = σ−12 σ1σ
−1
2 σ1

Note that this knot verifies the assumptions of Theorem 2.

8



• N = 3, q = 5, p = 10: 10123

B3,5,10 = B5
3,1,2 = (σ−12 σ1)

5

• N = 3, q = 7, p = 8: 51#5̄1

Qσ−12 Q−1σ1 where Q = σ2σ
−1
1 σ2σ1σ

−1
2 σ1

• N = 3, q = 7, p = 19: 14N11995

Qσ2Q
−1σ1 where Q = σ2σ

−1
1 σ−12 σ1σ2σ

−1
1

• N = 4, q = 5, p = 7: 52#5̄2

QαQ−1β where α = σ−12 β = σ1σ3 Q = α−1β−1αβ

• N = 4, q = 5, p = 13: 946

QαQ−1β where α = σ2 β = σ1σ3 Q = αβα−1β−1

• N = 5, q = 6, p = 22: 77

B5,6,22 = B2
5,3,11 = (QαQ−1β)2 where α = σ2σ

−1
4 β = σ−11 σ3 Q = α−1β

T
R
E
4
1
3
5
C
a
n
o
n
i
q
u
e
.
p
d
fFigure 3: B4,5,13 , A = 4, α = σ2, β = σ1σ3, λ(k) = (−1)[

2k
5
]

TRE5622marina.pdf

Figure 4: B5,6,22 = B2
5,3,11, α = σ2σ

−1
4 , β = σ−11 σ3
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4 Proof of the Main Theorem on the simple

minimal braid BN,q,p

K375.png

Figure 5: Graph of {ψk},k=1,2,3 of knot K(3, 7, 5)

We recall some facts from [S-V]. We endow R3 with coordinates (t, y, z):
the braid is the collections of the graphs in R3 of the functions ψk for k =
1, ..., N :

ψk = (ψ
(1)
k , ψ

(2)
k ) : [η, 1 + η] −→ R2

t 7→ (y, z) =
(
ψ

(1)
k (t), ψ

(2)
k (t)

)
=
(

sin
2πq

N
(t+ k), cos

2πp

N

(
t+ k + φ

))
(19)

K375Psi1.png
K375Psi2.png

Figure 6: Graph of {ψ(1)
k }k=1,2,3 and {ψ(2)

k }k=1,2,3 of knot K(3, 7, 5)

4.1 Periodic braids: proof of Proposition 1

We now prove Proposition 1 (stated in 1.2). We divide the interval [η, 1 + η]
into d intervals

In = [
n

d
+ η,

n+ 1

d
+ η], n = 0, ..., d− 1.

After a change of variables t 7→ s = dt, we see that the braid above an interval
In consists in the collection of graphs of the functions [dη, 1 + dη] −→ R2

s 7→
(

sin
2πq̃

N
(s+ dk), cos

2πp̃

N

(
s+ dk + dφ

))
(20)
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Since (N, d) = 1, the map k 7→ kd (mod N) induces a permutation of
{1, ..., N − 1}; hence the piece of BN,q,p above In is the collection of graphs
above [η, 1 + η] of the functions

s 7→
(

sin
2πq̃

N
(s+ k), cos

2πp̃

N

(
s+ k + dφ

))
i.e. it is the braid BN,q̃,p̃, representing the knot K(N, q̃, p̃, dφ); this proves
Proposition 1.

4.2 Crossing values and crossing points of the braid

The braid shadow is the projection of the braid onto the first two components
(t, y) of R2 i.e. the collection of the graphs of the ψ

(1)
k ’s.

A crossing point P of the braid is the data of two different integers, k, l with
0 ≤ k, l ≤ N − 1 and a number t ∈ [η, 1 + η] called a crossing value such that

ψ
(1)
k (t) = ψ

(1)
l (t) i.e. sin

(2π

N
q(t+ k)

)
= sin

(2π

N
q(t+ l)

)
.

There is a total of (N − 1)q crossing points, as in the case of the (N, q) torus
knot (where q = p).
A straightforward computation (cf. [S-V]) shows that, for a crossing point P
between the k-th and l-th strands of BN,q,p, the corresponding crossing value
t verifies for some integer m

t = −k + l

2
+
N

4q
(2m+ 1) (21)

The sign Σ(P ) of a crossing point P is

signe.png

Figure 7: crossing numbers +1 and −1

Σ(P ) = sign of
(
ψ

(2)
k (t)− ψ(2)

l (t)
)(
ψ

(1)′
l (t)− ψ(1)′

k (t)
)

(22)
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In [S-V], we computed this Σ(P ) as:

Σ(P ) = (−1)m(−1)[p
m
q
+ p

2q
+ 2pφ

N
](−1)[p

k−l
N

](−1)[q
k−l
N

] (23)

where [ ] denotes the integral part.

4.2.1 Determination of the crossing points above a given crossing
value

Let t be a crossing value of BN,q,p. We look for the y’s such that (t, y) is a
crossing point of the braid shadow.
We derive from (21) the existence of at least one ordered pair of integers
(m, s) such that

t = −s

2
+
N

4q
(2m+ 1). (24)

(with s = k + l). There can be several (m, s)’s verifying (24) for the same
crossing value t; however

1 ≤ s = k + l ≤ 2N − 3 (25)

which implies that there are at most two possible (m, s)’s (Lemma 1 below).
We will see later that for t and (m, s) given, a crossing point (t, y) of the
braid shadow above t will be given by the data of d = k − l.

Lemma 1. If t is a crossing value, one of the following two cases occurs:

• 1st case. There is exactly one ordered pair (m, s), 1 ≤ s ≤ 2N − 3
verifying (24); we denote it (m(t), s(t)) and s(t) is either N − 2, N − 1
or N .

• 2nd case. There exist exactly two (m, s)’s satisfying (24) with 1 ≤ s ≤
2N − 3; we denote them (m(t), s(t)) and (m(t) + q, s(t) +N).

Proof. We let (m(t), s(t)) be the ordered pair such that s(t) is the smallest
s for the (m, s)’s verifying (24) and (25). If (m1, s1) and (m2, s2) both verify
(24) for the same t, we have

q(s1 − s2) = N(m2 −m1) (26)

12



Since q and N are mutually prime, it follows that, for some integer a,

s2 = s1 + aN m2 = m1 + aq (27)

Since s(t) is the smallest one, it verifies

s(t) ≤ N. (28)

If we are in the 1st case of the Lemma 1, i.e. a single (m, s), we derive from
(27) that s(t) +N does not verify (25), i.e.

s(t) +N > 2N − 3 (29)

Putting together (28) and (29), we get

N − 2 ≤ s(t) ≤ N

which concludes the proof of the 1st case.
The 2nd case is clear: since s(t) + 2N > 2N − 3, s(t) + N is the only other
integer s in [1, 2N − 3] which can appear in (24); the corresponding m is
m(t) + q.

Lemma 1 told us which s’s and m occur for crossing points (t, y) above
a crossing value t: we now find the k, l’s such that s = k + l and derive the
σ±i ’s corresponding to the (t, y)’s.

Definition 2. Let P = (t, y) be a crossing point; we denote by i(P ) ∈
{1, ..., N − 1} the corresponding generator subscript, i.e. P is represented by
σi(P ) or σ−1i(P ).

Lemma 2. Let t be a crossing value of BN,q,p.

1. The point P = (t, y) is a crossing point of the braid shadow if and only
if

y = (−1)m(t) cos(
qd

N
π) (30)

where d is any integer in [1, ..., N − 1] of the same parity as s(t)

2. To determine i(P ), we do the Euclidean division of qd by 2N

qd = 2Nn+ w (31)

with n ≥ 0, −N < w < N .

13



(a) If m(t) is even,

i(P ) = i
(
t, cos(

qd

N
π)
)

= |w| (32)

(b) If m(t) is odd,

i(P ) = i
(
t,− cos(

qd

N
π)
)

= N − |w| (33)

Proof. Proof of 1: we treat separately the two cases of Lemma 1.

1. 1st case: a single ordered pair (m, s).
Let k, l such that k+l = s(t) and assume that l < k; note that d = k−l
has the parity of s(t).

(a) If s(t) = N − 1, the smallest possible value for l is 0 and k − l
runs through all integers d, 1 ≤ d ≤ N − 1 with the parity of
s(t) = N − 1.

(b) If s(t) = N−2 (resp. s(t) = N), the smallest value for l is 0 (resp.
1) and d runs through the integers in [1, N − 2] with the parity of
N − 2 or N ; since N − 1 has parity opposite to N and N − 2, we
can actually assume d in [1, N − 1].

To derive (30), we plug (24) into

y = sin
(2π

N
q(t+ k)

)
(34)

2. 2nd case: two ordered pairs: (m(t), s(t)) and (m(t) + q, s(t) +N).

(a) We first consider the k, l’s such that l < k and k + l = s(t). As
above, k − l runs through the integers d with the parity of s(t)
and such that

1 ≤ d ≤ s(t) (35)

(b) If k + l = s(t) +N , we look at d = k − l’s with l < k:

l = s(t) +N − k ≥ s(t) +N − (N − 1) = s(t) + 1

hence d = s(t) +N − 2l ≤ s(t) +N − 2s(t)− 2 = N − s(t)− 2 and

14



1 ≤ d ≤ N − s(t)− 2 (36)

Moreover every integer in d ∈ [1, N − s(t)− 2] with the parity of
s(t) + N is a legitimate d, i.e. there exist k, l in {1, ..., N − 1}
with d = k − l and k + l = s(t) + N ; for example N − s(t)− 2 =
(N − 1)− (s(t) + 1).

Using (34), we derive the y-coordinate of the crossing point:

y = (−1)m(t)(−1)q cos(π
qd

N
) = (−1)m(t) cos(π

qd̃

N
) (37)

where d̃ = N − d; if d verifies (36), then

s(t) + 2 ≤ d̃ ≤ N − 1 (38)

Since d has the parity of s(t) +N , d̃ has the parity of s(t).

Putting together the intervals (35) and (38) concludes the proof of the
2nd case.

Proof of 2. We derive from (31) that

cos(π
qd

N
) = cos(π

w

N
) = cos(π

|w|
N

)

so 2 (a) of Lemma 2 follows from the fact that the function cos is decreasing
on (0, π):

cos
π

N
> cos

2π

N
> ... > cos

(N − 1)π

N
.

and 2 (b) of Lemma 2 follows from

− cos(π
qd

N
) = − cos(π

w

N
) = − cos(π

|w|
N

) = cos(π
N − |w|
N

).

To see how many crossing points (t, y) occur above t, i.e. how many
values (30) takes for a given t, we notice the following.

• If u, v ∈ {1, ..., N − 1} and cos(π qu
N

) = cos(π qv
N

), then u = v.

• If u, v ∈ {1, ..., N − 1} and cos(π qu
N

) = − cos(π qv
N

), then u = N − v.
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So the sets {cos(π qu
N

) with 1 ≤ u ≤ N − 1} and {− cos(π qu
N

) with 1 ≤ u ≤
N − 1} are identical. We derive from Lemma 2

Corollary 2. Let t be a crossing value. The indices i(P )’s for the crossing
points P ’s above t are all the i’s in {1, ..., N − 1} and with

1. the parity of d and s(t) if m(t) is even

2. the parity of d +N and s(t) +N if m(t) is odd.

4.2.2 The sign of the crossing points

We now compute the sign of the crossing points described in Lemma 2.

Lemma 3. The sign of the crossing point corresponding to the (t, y) appear-
ing in (30) is given by

Σ(t, y) = (−1)m(t)σ
(
p
m(t)

q
+

p

2q
+

2pφ

N

)
σ(
qd

N
)σ(

pd

N
) (39)

where σ(r) is the parity of the integer part:

σ(r) = (−1)[r] (40)

Proof. We recall (Lemma 1) that k + l = s(t) or k + l = s(t) +N .
If k + l = s(t) and d = k − l, then (39) is just the formula (23) for the sign
of a crossing point. So we assume that k+ l = s(t) +N : we have seen above
that y is given by (37) with k − l = N − d̃ and we write (23) for the sign of
the crossing point

(−1)m(t)+qσ

(
q(
N − d̃

N
)

)
σ

(
p(
N − d̃

N
)

)
σ
(
p
m(t) + q

q
+

p

2q
+

2pφ

N

)

= (−1)m(t)σ(q
d̃

N
)σ(p

d̃

N
)σ
(
p
m(t)

q
+

p

2q
+

2pφ

N

)

We write the last two factors of (39) in terms of i(P ):

16



Lemma 4. We let P =
(
t, (−1)m(t) cosπ qd

N

)
be a crossing point of BN,q,p with

m(t), d and w as in 2) of Lemma 2. Then

σ(
qd

N
)σ(

pd

N
) =

{
σ
(Bpi(P )

N

)
if p is odd

(−1)m(t)σ
(Bpi(P )

N

)
if p is even

(41)

Proof. It follows from (31) that

σ(
qd

N
) = σ(

w

N
). (42)

We recall (13), namely 2NA+Bq = 1, hence d = 2NAd+Bqd; putting this
together with the Euclidean division in (31), we have

d = 2NAd + 2NnB +Bw (43)

Thus

σ(
pd

N
) = σ(

pBw

N
). (44)

Now

σ(
w

N
)σ(

pBw

N
) = σ(

|w|
N

)σ(
pB|w|
N

) = σ(
pB|w|
N

) (45)

• If m(t) is even, then i(P ) = |w| and the Lemma is proved.

• If m(t) is odd, we use the fact that B is odd to write

σ(
pB|w|
N

) = σ
(pB(N − i(P ))|w|

N

)
=

{
σ(pBi(P )

N
) if p is odd

−σ(pBi(P )
N

) if p is even

It follows from Lemma 4 that the sign Σ(P ) given in (39) of a crossing
point P of crossing value t is (ε has been defined in (14) above)

• σ
(
pm(t)

q
+ p

2q
+ 2pφ

N

)
ε(N, q, p)(i) if p is even

• σ
(
pm(t)

q
+ p

2q
+ 2pφ

N

)
(−1)m(t)ε(N, q, p)(i) if p is odd.

We recall (see the formulae (15) in the Main Theorem) that the ±1-exponent
of a σi in αN,q,p or βN,q,p is ε(N, q, p)(i), hence
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Lemma 5. The ±1-exponent of the αN,q,p or βN,q,p corresponding to a cross-
ing value t in BN,q,p is

1. σ
(
pm(t)

q
+ p

2q
+ 2pφ

N

)
if p is even

2. (−1)m(k)σ
(
pm(t)

q
+ p

2q
+ 2pφ

N

)
if p is odd.

The formulae in Lemma 5 depend on m(t), where t goes through the 2q
crossing values. If t is the h-th crossing value, for h = 1, ..., 2q, we want to
have m(t) directly as an expression in h so we number the crossing values

t1 < t2 < ... < tq < ... < t2q (46)

and for any integer k, with 1 ≤ k ≤ 2q, we let

m(k) = m(tk) s(k) = s(tk) (47)

If tk and tk+1 are two consecutive crossing values, we derive from (24)

tk+1 − tk =
1

2q

[
q
(
s(k)− s(k + 1)

)
+N

(
m(k + 1)−m(k)

)]
≥ 1

2q
(48)

Since there are 2q crossing values in [η, 1+η], (48) is an equality and we have

q
(
s(k)− s(k + 1)

)
+N

(
m(k + 1)−m(k)

)
= 1 (49)

We note in passing that, if we plug (49) into Proposition 2, we get the
confirmation of the obvious fact

Lemma 6. The crossing points above tk and tk+1 are represented by σ±1i ’s
with i’s of opposite parities.

We now confront (49) with 2NA+Bq = 1 and derive the existence of an
integer νk such that

m(k + 1)−m(k) = νkq + 2A.

Thus, for any k, there exists an integer ak such that

m(k) = m(1) + akq + 2(k − 1)A (50)
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(−1)m(k) = (−1)m(1)(−1)ak (51)

Define φ0 by

p
m(1)

q
− 2Ap

q
+

p

2q
+

2pφ0

N
= 0 (52)

We see (23) that φ0 is a critical phase, i.e. a phase for which the knot
K(N, p, q, φ) is singular. So we pick a phase

φ = φ0 + ξ (53)

where ξ is a very small positive number. Using (50), we rewrite

σ
(
p
m(t)

q
+

p

2q
+

2pφ

N

)
= (−1)akp(−1)

[
2Ap
q
k+ξ
]

(54)

It follows from Lemma 5 and equations (50), (54) that the exponent of the
αN,q,p or βN,q,p at the k-th crossing value is

(−1)m(1)(−1)

[
2Ap
q
k+ξ
]

if p is odd

(−1)

[
2Ap
q
k+ξ
]

if p is even

Since we are working up to mirror transformation, we assume

(−1)m(1) = 1.

We now conclude: the expression [2Ap
q
k + ξ] is equal to 1 for k = q, 2q and

equal to λ(k) for the other k’s. Going back to the statement of the Main
Theorem, this gives us the exponent for the k-th crossing values with k ≤ q
or k = 2q. We settle the case of the k’s with q < k < 2q by noticing that

λ(2q − k) = −λ(k).

5 The four-genus

5.1 Ribbon knots

A ribbon knot in S3 bounds a disk in S3 with only ribbon singularities; equiv-
alently it bounds an embedded disk in B4 with does not have local maxima
for the distance to the origin of B4. Thus a ribbon knot is slice, i.e. its 4-
genus is zero; the long-standing Slice-Ribbon conjecture asks if the converse
is true.
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5.1.1 Proof of Theorem 1

Th. 1 has been proved by Lamm and also follows from his more general
construction of ribbon symmetric unions ([La 2], [K-T]). His proof is fairly
allusive so we felt it would be useful to give a more detailed proof.
We recall the well-known fact:

Proposition 5. Let K be a knot in R3 which is symmetric with respect to a
plane P in R3; then it is ribbon.

Proof. We endow R3 with the frame Oxyz and assume that P is defined by
the equation x = 0. By genericity arguments, we assume

1. K meets P at a finite number of points

2. outside of P , K is never tangent to the direction of Ox.

Since K has one component, it meets P at exactly two points.
We let K+ (resp. K−) be the intersection of K with the half-space of R3

defined by z ≥ 0 (resp. z ≤ 0): K+ and K− are both diffeomorphic to a
closed interval.
Letting S be the symmetry in R3 with respect to P , we let

Φ = [0, 1]×K+ −→ R3

(t,X) 7→ tX + (1− t)S(X) (55)

The self-intersections of Φ are given by the data of t1, t2, X1, X2 such that

t1X1 + (1− t1)S(X1) = t2X2 + (1− t2)S(X2) (56)

We denote by (xi, yi, zi), i = 1, 2 the coordinates of Xi. Since S(xi, yi, zi) =
(−xi, yi, zi), (56) implies that

y1 = y2, z1 = z2.

Thus the line segments I1 = X1S(X1) and I2 = X2S(X2) are both included
in the line which is defined by the equations y = y1, z = z1. Moreover, one
of them is included in the other one and we have a ribbon singularity.
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α

β

QQ Q−1 QQ Q−1

Figure 8: B(5, q, p) and the link L

The Main Theorem tells us that, if p and q are mutually prime, with q
odd, BN,q,p is as in Fig. 8.
If N is the number of strands, there are N−1 half-twist tangles connecting Q

and Q−1; we replace them by N −1 trivial tangles and get the N -component
link L of Fig. 8 which is symmetric w.r.t. a plane.

Proposition 5 tells us that L bounds N ribbon disks D1, ..., DN ; and
the same arguments show us that two of these disks only have ribbon-type
intersection.
We now connect each Di to Di+1 by a half-twisted band bounded by the
half-twist tangle of Fig. 8. The resulting surface is a topological disk with
only ribbon singularities.

5.2 General case: proof of Theorem 2

We use an idea by Brandenbursky and Kedra ([B-K]). If b is a N -braid, we
denote by b̂ the link obtained by closing the braid b. If b1 and b2 are N -two
braids, [B-K] constructed a cobordism of Euler characteristic −N between

the closure of the product b̂1b2 and the disjoint union of the closures b̂1 t b̂2.
Letting q̃ = q

N
, p̃ = p

N
, we recall that

BN,q,p = Bd
N,q̃,p̃.

Applying [B-K]’s result d times, we derive a cobordism in B4 of Euler charac-

teristic −N(d−1) between B̂N,q,p and B̂N,q̃,p̃ t B̂N,q̃,p̃ t ...B̂N,q̃,p̃︸ ︷︷ ︸
d copies

. Since B̂N,q̃,p̃
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is a ribbon knot (Theorem 1), it bounds an embedded disk in B4. Thus B̂N,q,p

bounds a surface of Euler characteristic

−d(N − 1) + d = 1− (d− 1)(N − 1).

We recover the formula (9) for the genus and Theorem 2 is proved.

5.3 Quasipositive knots: proof of Proposition 2

Lee Rudolph (see [Ru] for details) defines a braid γ ∈ BN to be quasipositive
if it is a product of conjugates wσiw

−1 of positive braid generators, i.e.

γ = w1σi1w
−1
1 w2σi2w

−1
2 ...wkσikw

−1
k (57)

Theorem 3. ([Ru]) If γ is a quasipositive braid written as in (57) closing
in a knot γ̂, its four-genus verifies

1− 2g4(γ̂) = N − k.

It is easy to check that under the assumptions of Proposition 2, the expo-
nents of all the σ2k’s and σ2k+1’s appearing respectively in αN,q,p and βN,q,p
are all of the same sign. Since we are working up to mirror symmetry, we
can assume all these exponents to be equal to 1; thus

αN,q,p =
∏

2≤2k≤N−1

σ2k βN,q,p =
∏

1≤2k+1≤N−1

σ2k+1 (58)

Hence BN,p,q = (QαN,q,pQ
−1βN,q,p)

d is a quasipositive braid; Theorem 3 tells
us that 1− 2g4(K(N, q, p)) = N − d(N − 1) and Proposition 2 follows.

6 Trivial knots: proof of Proposition 4

6.1 The knot K(N, q, q +N) is trivial

We set
A =

∏
1≤2k≤N

σ2k B =
∏

1≤2k+1≤N

σ2k+1 (59)

Lemma 7.
BN,q,q+N = A(BA)

q−1
2 (B−1A−1)

q−1
2 B−1 (60)
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The main thing to note about this formula is that all the positive gener-
ators are on one side and all the negative generators are on the other side.

Proof. We use the Main Theorem. It assumes that q is odd but in the present
case, if q is even, N has to be odd, hence q +N is odd and we switch q and
q +N to apply the theorem. We compute

ε(i) = (−1)i λ(k) = (−1)k (61)

Thus αN,q,q+N =
∏

1≤2k≤N σ2k = A and βN,q,q+N =
∏

1≤2k+1≤N σ
−1
2k+1 = B−1.

We conclude by noticing that

(AB)
q−1
2 A = A(BA)

q−1
2

We construct a trivial pure braid BN ; we will show that BN,N+q,q is the
product of a power of BN and of a piece of BN .

If N = 2k is even, we let

BN = (BA)k(B−1A−1)k. (62)

If N = 2k + 1 is odd, we let

BN = (BA)kBA−1(B−1A−1)k. (63)

In both cases, we check that the corresponding permutation between the
endpoints of the braid is the identity, thus BN is a pure braid.

To prove that it is a trivial braid, we discuss when one strand of BN is
above another one; so let us fix some terminology.

We number the strands of BN : the j-th strand, 0 ≤ j ≤ N − 1 is the
strand starting at the (j + 1)-th point on the left (the points being counted
from top to bottom).
We say that the j-th strand is above the k-th strand if, wherever there is
a crossing point between these two strands, the j-th strand is above the k-
th strand. As an example, in Fig. 9, the red strand is above all the other
strands.
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Figure 9: B4,4 = σ1σ3σ2σ1σ3σ2σ
−1
1 σ−13 σ−12 σ−11 σ−13 σ−12

Lemma 8. If j, k are two integers with 0 ≤ j < k ≤ N − 1, the j-th strand
of BN is above the k-th strand. Thus BN closes in N unlinked trivial links,
i.e. BN = 1.

The figure 9 illustrates the lemma.

Proof. We describe the strands of BN in the braid shadow, i.e. their projec-
tion to the xy. We endow the plane with a coordinate Oxy such that the
j-th strand starts at (0,−j) and ends at (2N,−j). The upper left point has
coordinates (0, 0) (in Figure 9 it is the starting point of the red strand).
We say that a strand is ascending, denoted ↗ (resp. descending, denoted
↘) if it has a +1 (resp. −1) slope. It is horizontal, denoted −→, when the
slope is 0.

We describe here the k-strands for k odd (the case of an even k is simi-
lar): it goes up and down as follows

1. ↘ from (0,−k) to (N − 1− k,−(N − 1))

2. −→ from (N − 1− k,−(N − 1)) to (N − k,−(N − 1))

3. ↗ from (N − k,−(N − 1)) to (2N − 1− k, 0)

4. −→ from (2N − 1− k, 0) to (2N − k, 0)

5. ↘ from (2N − k, 0) to (2N,−k)

Assume now that the k-th strand is above the j-th strand at a crossing
point (x, y). Assuming that j is odd (the even case is similar), one of the
following two cases occurs
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1. 0 ≤ x ≤ N and the k-th (resp. j-th) strand is ↘ (resp. ↗). Then the
k-th strand is as 1. above and the j-th strand is as 3.

2. N ≤ x ≤ 2N and the k-th (resp. j-th) strand ↗ (resp. ↘). Then the
k-th strand is as 3. above and the j-th strand is as 5.

In both cases it is easy to check that k < j.

We conclude the proof of the proposition in the case when N is even; the
odd case is similar. We derive from Lemma 8 that for an n > k,

A(BA)n(B−1A−1)nB = A(BA)n−k(BA)k(B−1A−1)k(B−1A−1)n−kB

= A(BA)n−k(B−1A−1)n−kB.

Thus, if b is the remainder of the division of q−1
2

by k, we have

BN,q,q+N = A(BA)b(B−1A−1)bB (64)

The braid (64) is a piece of the braid (BA)k(B−1A−1)k where the i-th strand
is above the j-th strands, for j > i. Thus the same is true for (64) which
closes therefore in a trivial knot.

6.2 The knot K(N, 1, p) is trivial

This follows from the Main Theorem. We can also prove it directly by com-
puting the crossing points and their sign: we see that every σ±i appears once
and only once in the braid BN,1,p and so braid represents a trivial knot.

6.3 The other knots of Proposition 4

We have now seen two cases where K(N, q, p) is trivial. We know that
K(N, q, p) and K(N, p, q) are isotopic; and K(N, q, k) and K(N, q, 2qN +
k) (resp. K(N, q, 2qN − k)) are isotopic (resp. mirror image of one an-
other). Thus we can get more examples of trivial knots, e.g. K(3, 5, 29) and
K(3, 5, 31).

25



7 Lists of Jones polynomials
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Figure 10: List of Jones polynomials of knots K(3, 11, p)
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Figure 11: List of Jones polynomials of knots K(4, 11, p)
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8 Appendix

We give a better proof of the following fact from [S-V]:

Proposition 6. Let φ1 and φ2 two real numbers. The knots K(N, q, p, φ1)
and K(N, q, p, φ2) defined in (1) are either isotopic or mirror image of one
another.

Proof. Without loss of generality, we assume φ1 < φ2.
If there is no critical phase (i.e. a phase for which the knot is singular)
between φ1 and φ2, the two knots are isotopic.
In [S-V] we showed that the difference between two critical phases is of the
form

N

2
(
m

p
+
n

q
) (65)

for two integers m,n.
Thus it is enough to prove that, for a given φ3, and integers m and n, the
knots K(N, q, p, φ3) and K(N, q, p, φ3 + N

2
(m
p

+ n
q
)) are the same or mirror

images of one another.
Consider the parametrization of K(N, q, p, φ) given in (19); we change its
variable by setting

s = t+
Nn

2q
(66)

and we rewrite the expression in (19)(
sin

2πq

N
(t+ k), cos

2πp

N

(
t+ k + φ3 +

N

2
(
m

p
+
n

q
)
))

=
(
(−1)n sin

2πq

N
(s+ k), (−1)m cos

2πp

N
(s+ k + φ3)

)
(67)

Thus, if m and n have the same (resp. opposite) parities, the two knots are
isotopic (resp. mirror images of one another).
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Marc.Soret@lmpt.univ-tours.fr, Marina.Ville@lmpt.univ-tours.fr

30


