Equilibrium Data Mining and Data Abundance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Equilibrium Data Mining and Data Abundance

Résumé

We analyze how computing power and data abundance affect speculators' search for predictors. In our model, speculators search for predictors through trials and optimally stop searching when they find a predictor with a signal-to-noise ratio larger than an endogenous threshold. Greater computing power raises this threshold, and therefore price informativeness, by reducing search costs. In contrast, data abundance can reduce this threshold because it intensifies competition among speculators and it increases the average number of trials to find a predictor. In the former (latter) case, price informativeness increases (decreases) with data abundance. We derive implications of these effects for the distribution of asset managers' skills and trading profits.
Fichier principal
Vignette du fichier
Dugast,Foucault2020.pdf (979.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03053967 , version 1 (11-12-2020)

Identifiants

  • HAL Id : hal-03053967 , version 1

Citer

Jérôme Dugast, Thierry Foucault. Equilibrium Data Mining and Data Abundance. 2020. ⟨hal-03053967⟩
114 Consultations
146 Téléchargements

Partager

More