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Abstract

We analyze how computing power and data abundance affect speculators’ search

for predictors. In our model, speculators search for predictors through trials and

optimally stop searching when they find a predictor with a signal-to-noise ratio

larger than an endogenous threshold. Greater computing power raises this thresh-

old, and therefore price informativeness, by reducing search costs. In contrast, data

abundance can reduce this threshold because (i) it intensifies competition among

speculators and (ii) it increases the average number of trials to find a predictor.

In the former (latter) case, price informativeness increases (decreases) with data

abundance. We derive implications of these effects for the distribution of asset

managers’ skills and trading profits.
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1. Introduction

Asset managers devote considerable effort to find new investment signals (predictors of

asset cash-flows or returns). To this end, they take advantage of progress in information

technologies. This progress has reduced information processing costs (due to improve-

ment in computing power) and considerably increased the volume and diversity of avail-

able data (due to digitization and increase in storage capacities).1 For instance, asset

managers increasingly buy so called “alternative data”, such as credit/debit card data,

app usage data, satellite images, social media, web traffic data, etc. and use computer-

based methods to extract predictors of asset payoffs from these data and design trading

strategies exploiting these predictors.2

Data abundance and improvements in computing power are related but distinct phe-

nomena. For instance, unstructured data such as satellite images or text from social

media expand the set of variables to obtain predictors of future firms’ earnings. However,

they do not per se reduce the cost of processing data for obtaining these predictors. Thus,

to understand the effects of data abundance, one would like a theory of information ac-

quisition in which one can analyze the effect of expanding the search space for predictors

holding the cost of data processing constant (and vice versa). This is not possible in exist-

ing models of financial information acquisition (e.g., Verrecchia (1982)), which captures

all dimensions of the progress in information through a single variable, namely the cost of

acquiring information of a given precision. Thus, in this paper, we propose an extension

of standard models of information acquisition which allows to analyze data abundance,

holding the cost of finding information constant. Using this model, we show that the

effects of data abundance and progress in computing power on equilibrium outcomes in

financial markets are different.

Our model features a continuum of risk averse speculators (asset managers). In the

first stage (the “exploration stage”), each speculator optimally scours available data to

find a predictor of the payoff of a risky asset. In the second stage (the “trading stage”),

1See Goldfarb and Tucker (2019) and Nordhaus (2015) for a discussion of the economic implications
of this evolution.

2Marenzi (2017) estimates that asset managers have spent more than four billion in alternative data
in 2017 (see also “Asset managers double spending in new data in hunt for edge”, Financial Times, May 9,
2018. Abis (2018) finds that quantitative funds (using computer-driven models to analyze large datasets)
have quadrupled in size from 1999 to 2015 and that their growth has been more than twofold that of
discretionary funds. Moreover, Grennan and Michaely (2019) find that about 87% of the FinTechs in
their sample (190 FinTechs) specialize in producing investment signals using artificial intelligence.
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each speculator observes the realization of her predictor and optimally chooses her trad-

ing strategy. We formalize the trading stage as a standard rational expectations model

(similar to Vives (1995)). The novelty of our model (and its implications) stems from

the exploration stage. Here, instead of following the standard approach (e.g., Grossman

and Stiglitz (1980) or Verrecchia (1982)), whereby speculators obtain a predictor of a

given precision in exchange of a payment, we explicitly model the search for a predictor

as a sequential process and we analyze how the optimal search strategy depends on (i)

the cost of exploration and (ii) the amount of data available for exploration (the “search

space”).

We model the search for predictors as follows. We assume that existing data can

be combined to generate predictors differing in their signal-to-noise ratios (“quality”).

The search space is determined by the quality of the most informative predictor (the

“data frontier”), denoted τmax, and the least informative predictor, which is just noise.

The distribution of the quality of predictors on this interval is exogenous. Given this

distribution, each speculator simultaneously and independently explores (“mines”) the

data. Each new exploration costs c and returns a predictor whose quality is drawn from

the distribution of predictors’ quality. After obtaining a predictor, a speculator can decide

either to explore the data further, to possibly obtain an even better predictor, or to trade

on the predictor she just found.

As a motivation for our approach, consider asset managers using accounting variables

to forecast future stock earnings. There are many ways to combine these variables to

obtain predictors. For instance, using 240 accounting variables, Yan and Zheng (2017)

build more than 18, 000 trading signals and find that many of these yield significant

abnormal returns (even after accounting for the risk of data snooping). The data mining

cost, c, represents the labor and computing costs of considering a particular predictor (a

particular combination of the accounting variables), designing a trading strategy based

on this predictor, backtesting it, and thinking about possible economic stories for why

the strategy works. After obtaining a predictor, each manager can decide to start trading

on it or to keep searching for another, more precise, predictor.

New datasets enable speculators to use new variables to forecast asset payoffs and

should therefore push back the data frontier, i.e., increase τmax.3 In fact, the advent

3Recent empirical findings support this conjecture. For instance, Katona et al. (2019) find that
combining satellite images of parking lots of U.S. retailers from two distinct data providers improves the
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of big data in asset management is often described as a gold rush for this reason: Big

data combined with new forecasting techniques (machine learning) enable asset managers

to discover more precise predictors.4 We refer to this dimension of data abundance as

the “hidden gold nugget” effect. However, data abundance also creates “a needle in the

haystack problem”: It results in a proliferation of datasets and only a fraction of these

datasets contains useful information for forecasting asset payoffs. Separating the wheat

from the shaff can only be done through explorations, which is costly. To capture this

dimension of data abundance, we assume that each exploration returns an informative

predictor with probability α < 1. In sum, we analyze the effect of data abundance on

equilibrium outcomes by considering either an increase in τmax (the hidden gold nugget

effect) or a decrease in α (the needle in the haystack problem).5

As for greater computing power, it reduces the cost of exploring a new dataset.6 Thus,

we study the effect of greater computing power by considering the effect of a decrease in

the cost of exploration, c, on equilibrium outcomes.

In equilibrium, each speculator’s optimal search strategy follows a stopping rule: She

stops searching for a predictor after finding one whose quality (signal-to-noise ratio)

exceeds an endogenous threshold, denoted τ ∗ (we refer to such a predictor as being

“satisficing”). This threshold is such that the speculator’s expected utility of trading on

a predictor of quality τ ∗ is just equal to her expected utility of searching for another

predictor. The latter reflects the prospect of obtaining a larger expected trading profit

by finding a predictor of higher quality deflated by the total expected cost of search

to find such a predictor (i.e., the per-exploration cost, c times the expected number of

accuracy of the forecasts of these retailers’ quarterly earnings (see also Zhu (2019)). Also, van Binsbergen
et al. (2020) find that, with machine learning techniques, one can obtain more precise forecasts of firms’
future earnings than analysts’ forecasts (they use random forests regressions combining more than 70
accounting variables with analysts’ forecasts).

4See, for instance, “Hedge funds see a gold rush in data mining”, Financial Times, August 28, 2017.
5As an illustration, consider searching for medication to cure the Coronavirus in the scientific liter-

ature on this topic. There have been more than 23,000 scientific papers written on this topic between
January and June 2020 (see da Silva et al. (2020)). As this number grows, the fraction of truly infor-
mative papers might drop, even though the chance of a scientific discovery that stops the virus goes
up.

6For instance, an increase in computing power reduces the time costs of finding predictors. Brogaard
and Zareei (2019) use a genetic algorithm approach to select technical trading rules. They note that “the
average time needed to find the optimum trading rules for a diversified portfolio of ten NYSE/AMEX

volatility assets for the 40 year sample using a computer with an IntelÂ® Core(TM) CPU i7-2600 and
16 GM RAM is 459.29 days (11,022.97 hours).” For one year it takes approximately 11.48 days.” They
conclude that their analysis would not be possible without the considerable increase in computing power
in the last 20 years.

3
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explorations required to find a predictor with a quality higher than τ ∗).

All speculators use the same stopping rule because they are ex-ante identical (same

preferences, search cost etc.). However, as explorations’ outcomes are random, specu-

lators find and trade on predictors of different quality. Thus, in equilibrium, (i) only

predictors of sufficiently high quality are used for trading and (ii) speculators endoge-

nously exploit predictors of different quality. Specifically, the quality of predictors used

in equilibrium ranges from τ ∗ (the least informative predictor used in equilibrium) to

τmax (most informative).

Greater computing power induces speculators to adopt a more stringent stopping rule

in equilibrium, i.e., a decrease in c raises τ ∗. Indeed, a decrease in the per-exploration

cost, c, directly reduces the total expected cost of launching a new exploration after

finding a predictor. Hence, it raises the value of searching for another predictor after

finding one and therefore it induces speculators to be more demanding for the quality,

τ ∗, of the least informative predictor used in equilibrium. An indirect consequence (the

“competition effect”) is that, on average, speculators trade more aggressively on their

signal. Indeed, they face less uncertainty on the asset payoff because their predictors are

better on average. As a result, price informativeness increases. The competition effect

dampens the positive effect of a reduction in the exploration cost on the value of searching

for a better predictor. However, it is never strong enough to fully offset it.

The needle in the haystack problem (a drop in α) does not affect the per exploration

cost, c. However, it raises the total expected cost of search for speculators because it

reduces the chance of finding a satisficing predictor in each exploration. For this reason,

it leads speculators to be less demanding for the quality of the least informative predictor,

τ ∗, for the same reasons as an increase in the per exploration cost does.

The effect of pushing back the data frontier (an increase in τmax) on speculators’

optimal search strategy (τ ∗) is more subtle because it directly affects the value of searching

for another predictor in two opposite directions. One the one hand, it raises this value

for two reasons. First, holding investors’ stopping rule constant, it enlarges the range of

satisficing predictors, which raises the probability that each exploration is successful. This

effect reduces the total expected cost of search. Second, holding price informativeness

constant, it increases the expected utility of trading on a satisficing predictor due to the

prospect of finding even more informative predictors (the “hidden gold nugget effect”).

4
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However, an increase in the quality of the best predictor also has a direct positive effect

on price informativeness because it raises the average quality of predictors and therefore

the average aggressiveness with which speculators exploit their signals. This competition

effect reduces the value of searching for predictors. We show that it dominates when τmax

is high enough. Then, a push back of the data frontier leads speculators to follow a less

demanding search policy (i.e., τ ∗ drops). Thus, the model implies an inverse U-shape

relationship between the quality of the least informative predictor used in equilibrium

(τ ∗) and the quality of the most informative predictor.

In sum, the model highlights two channels through which data abundance can reduce

the quality of the least informative predictor used in equilibrium: (i) It reduces the trad-

ing value of predictors by intensifying competition among speculators (the “competition

effect”) and (ii) it increases the total expected cost of search, even though it does not

change the per exploration cost (“needle in the haystack effect”).

The model has several testable implications. First, it has implications for the dis-

tribution of investment skills across funds (or managers of these funds). Several papers

(e.g., Kacperczyk and Seru (2007) or Kacperczyk et al. (2014)) relate these skills to the

quality (precision) of asset managers’ signals and interpret heterogeneity in skills as het-

erogeneity in the quality of these signals. In our model, this distribution is endogenous.7

In particular, shocks to computing power, data abundance and other parameters of the

model affect the lower bound of this distribution and therefore the range of skills (say,

the difference in skills between funds in the lowest and top skill deciles). For instance, the

model predicts that improvements in computing power should reduce this range (because

it increases τ ∗) while data abundance (a push back of the data frontier or the needle

in the haystack problem) can have the opposite effect (because it can reduce τ ∗ and, at

least weakly, weakly improves τmax). The model also implies that an increase in prior

uncertainty (the variance of the asset payoff) or the volume of uninformed (noise) trad-

ing should reduce the range of funds’ skills because it induces speculators to be more

demanding for the quality of their predictors in equilibrium.

7In our model, heterogeneity in speculators’ skills arises even though speculators are ex-ante identical.
They eventually trade on predictors of different quality (appear to have different skills) because the
outcome of their search for predictors is random, even though search is optimal. This finding suggests
that heterogeneity in asset managers’ skills is not necessarily due to innate differences in abilities or
differences in efforts (in our model, speculators who happen to pay a larger search cost and therefore
seem to exert more effort do not necessarily trade on predictors of higher quality). It might just reflect
luck in the search process for predictors.

5
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Our second set of predictions is about asset price informativeness. Our model predicts

that greater computing power improves price informativeness because it leads speculators

to be more demanding for the quality of their predictors.8 In contrast, the effect of data

abundance on asset price informativeness is more complex. On the one hand, it can lead

speculators to be less demanding for the quality, τ ∗, of the least satisficing predictor. On

the other hand, it pushes back the data frontier and improves the quality of the most

informative predictor. The first effect reduces the average quality of predictors used by

investors while the second improves it. As a result, the effect of data abundance on price

informativeness is ambiguous in our model. In the absence of the needle in the haystack

problem (α = 1), we show that the second effect dominates and therefore data abundance

improves price informativess. In contrast, if data abundance also makes the needle in the

haystack problem more severe (α decreases) then the first effect can dominate so that

price informativeness drops when more data become available.9.

Our third set of predictions regards effects of computing power and data abundance

on speculators’ trading profits (excess returns) and the crowdedness of their strategies

(measured by the correlation of their holdings). The model predicts an inverse U-shape

relationship between speculators’ average trading profits and computing power. Indeed,

greater computing power raises the average quality of the predictors used in equilibrium

and therefore price informativeness. The first effect raises speculators’ expected trading

profit while the second reduces it. The former dominates if and only if speculators’ cost of

exploration, c, is large enough. An improvement in the data frontier has the same effect for

the same reasons. The needle in the haystack problem reduces price informativeness and

the average quality of predictors used in equilibrium. The second (first) effect dominates

when the problem becomes sufficiently severe (α is large enough). Hence, ultimately, the

model also predicts an inverse U-shape relationship between speculators’ average trading

profits and data abundance. So overall the model implies that progress in information

technologies initially benefit to all speculators until a point where it starts reducing

their profits. Finally, we show that greater computing power or an improvement in the

8In line with this prediction, Gao and Huang (2019) find that the introduction of the EDGAR system
in the U.S. (which allows investors to have internet access to electronic filings by firms) had a positive
effects on measures of price efficiency. One possible reason, as argued by Gao and Huang (2019), is that
the EDGAR system reduced the cost of accessing data (a component of exploration cost) for investors.

9Given that technological progress has both enlarged the search space and reduced search costs, these
implications of our model can explain why the empirical literature on the effect this progress on asset
price informativeness reports conflicting results. See Section 5.2 for a discussion.
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data frontier reduce the pairwise correlation in speculators’ trades while a drop in the

proportion of informative datasets (α) has the opposite effect.

2. Related Literature

Our paper contributes to the literature on informed trading with endogenous information

acquisition (e.g., Grossman and Stiglitz (1980), Verrecchia (1982); see Veldkamp (2011)

for a survey). This literature often takes a reduced-form approach to model the cost

of acquiring a signal of given precision. For instance, Verrecchia (1982) (and several

subsequent papers) assumes that this cost is a convex function of the precision of the

signal. The learning technology in our model is different. Indeed, speculators do not

control the exact precision of their signal (which ultimately is random) but only the

lower bound of this precision. In raising this bound, they raise the expected precision of

their signal but they also raise their total expected search cost (as the expected number

of exploration rounds increases when speculators use a more stringent stopping rule).

The relationship between a speculator’s expected search cost and expected precision is

endogenous and micro-founded by an optimal search model.10 As explained previously,

this approach gives us a way to analyze separately the effects of greater computing power

(a decrease in the cost of processing data) and data abundance (an expansion of the

search space).

Banerjee and Breon-Drish (2020) consider a model in which one informed investor

can dynamically control his timing for information acquisition about the payoff of a

risky asset. In this model, the informed investor optimally alternates between periods

in which she searches for information (when the volume of noise trading is high enough)

and periods in which she does not (when the volume of noise trading is low). When she

searches for information, the investor finds a signal of a given precision according to a

10Han and Sangiorgi (2018) offers an interesting micro-foundation for the specification of information
acquisition costs based on a model in which an agent can draw normally distributed signals from a fixed
set (an “urn”), with replacement (so that the agent can draw the same signal multiple times). Each
draw is costly in their model. They show that the relationship between the precision of the average
signal obtained by the agent (a sufficient statistics for all his signals) and her total investment in drawing
signals is convex and becomes linear when the number of possible signals goes to infinity. Han and
Sangiorgi (2018) use this specification to analyze an optimal forecasting problem. Our approach differs
in many respects. In particular, we jointly solve for the equilibrium of the market for a risky asset and
speculators’ optimal search for predictors (in Han and Sangiorgi (2018), the number of draws by an agent
is exogenous and they do not apply their model to trading in financial markets).

7
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Poisson process and starts trading on this signal as soon as she finds it. Interestingly,

Banerjee and Breon-Drish (2020) shows that this dynamic model generates predictions

different from the standard static model in which the informed investor must decide to

acquire a signal before trading. In contrast, we depart from the traditional standard static

model by modeling informed investors’ search for signals of different precisions (in a static

environment since there is no time-variation in parameters affecting the profitability of

informed trading over exploration rounds in our model) and we compare the effects (e.g.,

on the heterogeneity in signals’ precisions) of a reduction in search costs with the effects

of expanding the search space (data abundance).

Our paper is also related to the recent literature analyzing the economic effects of

progress in information technologies (see, Goldfarb and Tucker (2019) and Veldkamp

and Chung (2020) for a review) and more specifically theoretical papers analyzing the

effects of these technologies for the production of financial information (e.g., Abis (2018),

Dugast and Foucault (2018), Farboodi and Veldkamp (2019), or Huang et al. (2020)).

These papers analyze this progress as a decrease in the cost of processing information

or, similarly, an increase in investors’ information processing capacities. In contrast, our

model focuses on another dimension of this progress, namely data abundance, i.e., the

expansion of investors’ search space for predictors. We show that the effects of data

abundance and the cost of processing data (c in our model) are different and derive

several implications that should allow empiricists to test whether these differences matter

empirically. Also, we explicitly analyze the acquisition of financial information as a search

problem and consider the effects of reducing the cost of search (c) and increasing the search

space on equilibrium outcomes. Goldfarb and Tucker (2019) and Agrawal et al. (2019)

highlight the importance of doing so to understand economic implications of digitization

and artificial intelligence.

3. Model

We consider a financial market with a unit mass continuum of risk averse (CARA) spec-

ulators, a risk neutral and competitive market maker, and noise traders. Investors can

invest in a risky asset and a risk free asset with interest rate normalized to zero. Figure

1 describes the timing of the model.

8
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Period 0

Exploration :

� Each speculator
searches for a
predictor of the
asset payoff.

� In each search
round, a speculator
finds a predictor
with probability
αPr(θ ∈ [θ, π2 ])).

Period 1

Trading :

� Each speculator
observes the realization
of her predictor (sθ)
and chooses a trading
strategy, x(sθ, p).

� Speculators, noise
traders and dealers
trade.

� Market clears : The
asset price is realized.

Period 2

Asset
payoff, ω, is
realized.

Figure 1: Timing

The payoff of the risky asset, ω, is realized in period 2 and is normally distributed

with mean zero and variance σ2. Speculators search for predictors of the asset payoff in

period 0 (the “exploration stage”). Then, in period 1 (the “trading stage”), they observe

the realization of these predictors and can trade on them in the market for the risky asset.

We now describe these two stages in details.

The exploration stage. In period 0, each speculator i searches for a predictor of the

asset payoff, ω. There is a continuum of potential predictors. Each predictor, sθ, is

characterized by its type θ and is such that:

sθ = cos(θ)ω + sin(θ)εθ, (1)

where θ ∈ [0, π/2] and the εθs are normally and independently distributed with mean

zero and variance σ2. Moreover, εθ is independent from ω. Let τ(θ) ≡ cos2(θ)/ sin2(θ) =

cot2(θ) denote the signal-to-noise ratio for a predictor with type θ. We refer to this ratio

as the “quality” of a predictor.11 The quality of a predictor is inversely related to its type,

11Observe that the predictor sθ is equivalent (in terms of informativeness) to the predictor ŝθ =
ω + cot(θ)−1εθ, whose precision is τ(θ)/σ2. Thus, a predictor of high quality is a predictor with high

9
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θ and unrelated to the risk of the asset, σ2, because Var[εθ] = Var[ω] = σ2. Without

this assumption, the quality of all predictors would, counter-intuitively, increase with the

uncertainty of the final payoff (σ2).

We assume that predictors’ types, θs, are distributed according to the cumulative

probability distribution Φ(.) (density φ(.)) on [0, π/2]. Speculators discover predictors’

types in period 0 through a sequential search process. Each search round corresponds to

a new exploration (“mining”) of available data to obtain a new type of predictor. Each

exploration costs c. It is unsuccessful, i.e., yields no predictor (or equivalently a predictor

that is just noise), with probability (1 − αPr(θ ∈ [θ, π2 )), where 0 < α ≤ 1. Otherwise

the exploration is successful and returns a predictor of type θ ∈ [θ, π2 ] with probability

φ(.).12 After each exploration, a speculator can decide (i) to stop searching and trade in

period 1 on the predictor she just found or (ii) to start a new exploration in the hope

of finding an even better predictor. We assume that there is no limit on the number of

explorations.

It is worth stressing that speculators observe the realization of their chosen predictor,

sθ, in period 1, not period 0. In period 0, they just choose the type (quality) of the

predictor whose realization they will observe at date 1. A predictor can be viewed as

a particular combination of variables from various datasets (e.g., past earnings, satellite

images and consumer transactions data) that forecast the payoff of the asset. One explo-

ration consists in testing the predicting power of a particular combination with prediction

tools (e.g., regression analysis or machine learning techniques). For instance, one can in-

terpret each exploration as collecting various variables and running a regression of the

asset payoff (e.g., stock earnings) on these variables. The estimates of the coefficients

of this regression can then be used to compute the predicted value of the regression, sθ,

at date 1 after observing the realization of the variables used in this regression at this

date.13

Thus, a predictor does not need to be interpreted as a single variable. It can be viewed

precision.
12When they find a predictor, speculators perfectly observe its quality, τ(θ). Thus, there is no un-

certainty on whether a predictor is spurious or not. In reality, the quality of predictors is uncertain (see
Harvey (2017)). We leave the analysis of this case for future research.

13In this approach, the R2 of the regression is a measure of the quality of the predictor. Indeed, the
theoretical R2 of a regression of ω on sθ (i.e., 1−Var[ω | sθ]/Var[ω]) is equal to cos2(θ). Thus, the higher
the quality of a predictor, the higher the R2 of a regression of the asset payoff on the predictor. In other
words, searching for predictors of high quality in the model is the same thing as searching for predictors
with high R2s.

10
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as a combination of variables whose weights have been optimally chosen to minimize

the predictor’s forecasting error in-sample. In this interpretation, speculators can try

to improve the quality of their predictors by trying new combinations (e.g., by buying

datasets containing new variables).

As more datasets become available (“data abundance”), the number of possible com-

binations of variables that one can use to predict asset payoffs increases. This evolution

has two consequences controlled by parameters θ and α in the model. First, it pushes

back the “data frontier”, i.e., it increases the chance (at least weakly) of finding even

more informative predictors than those existing before. We refer to this dimension of

data abundance as the “hidden gold nugget effect.” For instance, by combining satellite

images of parking lots at Walmart with credit card transactions data and more traditional

accounting data, one might be able to find more informative predictors of future earnings

for Walmart than using accounting data alone. This dimension of data abundance is

controlled by θ in our model: When θ decreases, the quality of the best predictor (the

“hidden gold nugget”), denoted τmax ≡ τ(θ), improves.

Second, the share of combinations that yield informative predictors might fall as the

number of all possible combinations explodes. For instance, there are myriads of ways in

which one could combine traffic data in large cities with other data to predict economic

growth. However, a few are likely to be informative and discovering these combinations

take time. We refer to this dimension of data abundance as the “needle in the haystack

problem.”14 It is controlled by α in our model: As α decreases, each round of exploration

is less likely to be successful as if the share of informative predictors was falling.15

Finally, parameter c represents the cost of exploring a specific dataset to identify a

predictor. Greater computing power reduces this cost. For instance, with more powerful

computers, one can explore more datasets in a fixed amount of time. So the time cost of

data mining is smaller. Thus, we analyze the effect of progress in computing power by

considering the effect of a decrease in c on the equilibrium.

14Agrawal et al. (2019) discusses a related problem for the generation of new scientific ideas. Specifi-
cally, as the space of possible combinations of existing ideas to create new ones enlarges, it becomes more
difficult to identify new useful combinations. One can think of the search for predictors at date 0 as a
search for new “ideas” to forecast asset payoff. Each new idea is characterized by its forecasting power.

15See for instance “The quant fund investing in humans not algorithms” (AlphaVille, Financial Times,
December 6, 2017), reporting discussions with a manager from TwoSigma noting that: “Data are noise.
Drawing a tradable signal from that noise, meanwhile, takes work, since the signal is continuously evolving
[...] Crucially, Duncombe added, there’s qualitative data decay going on too. Back in the day, star
managers may have had access to far smaller data sets, but the data in hand was of much higher quality.”
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We focus on equilibria in which each speculator follows an optimal stopping rule θ∗i .

That is, speculator i stops searching for new predictors once she finds a predictor with

type θ ≤ θ < θ∗i (a predictor of sufficiently high quality in the feasible range). We denote

by Λ(θ∗i ; θ, α) the likelihood of this event (the probability of success) for speculator i in a

given search round. That is:

Λ(θ∗i ; θ, α) ≡ αPr(θ ∈ [θ, θ∗i ]) = α× (Φ(θ∗i )− Φ(θ)) (2)

Thus, a decrease in θ raises the likelihood of finding a predictor in a given exploration,

holding α constant. This effect captures the idea that while data abundance might reduce

the fraction of informative datasets, it increases the chance of finding a good predictor

once one has identified an informative dataset.

As the outcome of each exploration is random, the realized number of explorations

varies across speculators (even if they use the same stopping rule). We denote by ni

the realized number of search rounds for speculator i. This number follows a geometric

distribution with parameter Λ(θ∗i ; θ, α). Thus, the expected number of explorations for a

given speculator (a measure of her search intensity) is:

E[ni] = Λ(θ∗i ; θ, α)−1. (3)

To simplify the exposition, we assume that speculators cannot “store” predictors that

they turn down (i.e., the search for predictors is without recall). We show in Section 6.1

of the online appendix that this assumption is innocuous: The equilibrium of the model

is identical if, when they decide to stop searching, speculators have the option to pick the

best predictor obtained up to this point.

A last remark is in order. In our model, launching a new exploration does not guaran-

tee that one will necessarily obtain a better predictor than in previous explorations. At

the first glance, this may look counter-intuitive because one might think that as specula-

tors observe more predictors, they should be able to obtain an increasingly precise signal

about the asset payoff (e.g., by just taking the average of all signals). However, at date

0, each exploration returns the type of a particular predictor, not its realization (signals

are observed only at date 0). And, as previously explained, we see an exploration as

experimenting with a new combination of variables (a new “investment idea”) to build a
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predictor of the asset payoff. As this combination is new, it does not necessarily have a

higher forecasting power than previous combinations.

The trading stage. Trading begins after all speculators find a predictor with satisficing

quality. At the beginning of period 1, each speculator observes the realization of her

predictor, sθ and chooses a trading strategy, i.e., a demand schedule, xi(sθ, p), where, p,

is the asset price in period 1.

As in Vives (1995), speculators trade with noise traders and risk-neutral market mak-

ers. Noise traders’ aggregate demand is price-inelastic and equal to η, where η ∼ N (0, ν2)

(η is independent of ω and errors’ in speculators’ signals). Market-makers observe in-

vestors’ aggregate demand, D(p) =
∫
xi(sθ, p)di+ η and behave competitively. The equi-

librium price, p∗ is equal to their expectation of the asset payoff conditional on aggregate

demand from noise traders and speculators:

p∗ = E [ω |D(p∗) ] . (4)

Speculators’ objective function. At t = 2, the asset pays off and speculator i’s final

wealth is

Wi = xi(sθ, p)(ω − p)− nic. (5)

The number of explorations for speculator i, ni, is independent from the asset payoff, its

price, and the realization of the speculator’s predictor, sθ, because ni is determined in

period 0, before the realizations of these variables. Thus, the ex-ante expected utility of

a speculator can be written:

E [− exp(−ρWi)] = E [− exp(−ρ(xi(sθ, p)(ω − p))]︸ ︷︷ ︸
Expected Utility from Trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected Utility Cost of Exploration

(6)

The first term in this expression represents the ex-ante expected utility that a speculator

derives from trading gross of her total exploration cost while the second term represents

the expected utility of the total cost paid to find a predictor (we call it the expected utility

cost of exploration). The expected utility from trading depends both on the investor’s

optimal trading strategy (xi(sθ,i, p)) and her optimal stopping rule (θ∗i ) because this rule

determines the distribution of sθ. The expected utility cost of exploration depends on the
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speculator’s stopping rule, θ∗i , because it determines the distribution of ni. In the existing

literature (e.g., Grossman and Stiglitz (1980)), ni = 1 (investors pays a cost and gets a

signal). In our model, ni is random and its distribution is controlled by the speculator

through her search behavior.

Each speculator chooses her stopping rule, θ∗i , and her trading strategy, xi(sθ,i, p), to

maximize her ex-ante expected utility.

4. Equilibrium Data Mining

4.1 Equilibrium

We focus on symmetric equilibria in which all speculators choose the same stopping rule,

θ∗. We solve for such an equilibrium as follows. First, we solve for the equilibrium of

the trading stage in period 1 taking θ∗ as given and we deduce the ex-ante expected

utility achieved by speculator i when she chooses a predictor of type θ in period 0. We

then observe that a speculator should stop searching as soon as she finds a predictor

such that the expected utility of trading on this predictor is larger than or equal to the

expected utility she can obtain by launching a new round. The optimal stopping rule

of each investor, θ∗i (θ∗), is such that this condition holds as an equality (so that the

speculator is just indifferent between searching more or stopping). Finally, we pin down

θ∗ by observing that, in a symmetric equilibrium, each speculator’s best response to other

speculators’ stopping rule, θ∗, must be identical, i.e., θ∗i (θ∗) = θ∗.

Equilibrium of the asset market in period 1. The outcome of the exploration

phase is characterized by the distribution of the predictors’ types found by speculators.

Let φ∗(θ; θ∗; θ, α) be this distribution given that speculators’ follow the stopping rule θ∗:

φ∗(θ; θ∗; θ, α) = φ(θ)
Λ(θ∗; θ, α) . (7)

This distribution characterizes the heterogeneity of speculators’ predictors in equilib-

rium. We denote the average quality of predictors across all speculators in period 1 by

τ̄(θ∗, θ, α) ≡ E [τ(θ)| θ ≤ θ ≤ θ∗] and we make the following assumption on the distribu-

tion φ(·):
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A.1: The distribution of predictors’ type, φ(.), is such that for all θ∗ > 0, τ̄(θ∗; 0, α)

exists.

This technical condition just guarantees that the equilibrium remains well defined

even when θ = 0.16 Proposition 1 provides the equilibrium of the asset market in period

1.

Proposition 1. In period 1, the equilibrium trading strategy of a speculator with type θ

is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

= τ(θ)
ρσ2 (ŝθ − p) , (8)

where ŝθ = ω + τ(θ)−1/2εθ and the equilibrium price of the asset is:

p∗ = E[ω|D(p)] = λ(θ∗)ξ. (9)

where

ξ = ω + ρσ2τ̄(θ∗; θ, α)−1η, and λ(θ∗) = τ̄(θ∗; θ, α)2

τ̄(θ∗; θ, α)2 + ρ2σ2ν2 , (10)

This result extends Proposition 1.1 in Vives (1995) to the case in which speculators

have signals of heterogenous precisions (determined by their θ in our model). The predic-

tor sθ is informationally equivalent to the predictor ŝθ = ω + τ(θ)−1/2εθ. A speculator’s

optimal position in the asset is equal to the difference between ŝθ and the price of the

asset (her expected dollar return) scaled by a factor that increases with the quality of the

predictor and decreases with the speculator’s risk aversion. The scaling factor measures

the speculator’s aggressiveness in trading on her predictor. Speculators with predictors

of higher quality trade more aggressively on their signal because they face less risk (their

forecast of the asset payoff is more precise).

The total demand for the asset (D(p)) aggregates speculators’ orders and therefore

reflects their information. Observing this demand is informationally equivalent to observ-

ing the signal ξ, whose informativeness increases with the average quality of speculators’

predictors, τ̄(θ∗; θ, α). Thus, the market maker can form a more precise forecast of the

asset payoff and the asset price is therefore more informative when the average quality of

speculators’ predictors, τ̄(θ∗; θ, α), is higher. Formally, let measure the informativeness

16Indeed, for some distributions of predictors’ type, φ(.), τ̄(θ∗; θ, α) can diverge because τ(θ) goes
to infinity when θ goes to zero. Assumption A.1 means that we exclude these distributions from our
analysis.
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of the asset price by I(θ∗; θ, α) = Var[ω | p∗]−1 as in Grossman and Stiglitz (1980). Using

Proposition 1, we obtain:

I(θ∗; θ, α) = τω + τ̄(θ∗; θ, α)2τ 2
ω

ρ2ν2 , (11)

where τω = 1/σ2 is the precision of speculators’ prior about the asset payoff. As expected,

the asset price is more informative when the average quality of speculator’s predictors

increases. Thus, the informativeness of the asset price is inversely related to θ∗ because

τ̄(θ∗; θ, α) decreases with θ∗. Thus, other things equal, price informativeness is smaller

when speculators chooses a less stringent stopping rule for the quality of the predictors

on which they trade.

Equilibrium of the exploration phase. Using the characterization of the equilibrium

of the asset market, we compute a speculator’s expected utility from trading ex-ante, i.e.,

before observing the realization of her predictor and the equilibrium price, when her

predictor has type θ and other speculators follow the stopping rule θ∗. We denote this

ex-ante expected utility by g(θ, θ∗) and refer to it as the trading value of a predictor with

type θ. Formally:

g(θ, θ∗) ≡ E [− exp(−ρ(x∗(sθ, p∗)(ω − p∗)) | θi = θ] . (12)

Lemma 1. In equilibrium, the trading value of a predictor with type θ is:

g(θ, θ∗) = −
(

1 + Var[E[ω|sθ, p]− p]
Var[ω|sθ, p]

)− 1
2

= −
(

1 + τ(θ)τω
I(θ∗; θ, α)

)− 1
2

. (13)

Thus, the trading value of a predictor increases with its quality and decreases with

the informativeness of the asset price. Thus, it is inversely related to the average quality

of predictors used by speculators. Hence, the value of a given predictor for a speculator

depends on the search strategy followed by other speculators: It is smaller if other spec-

ulators are more demanding for the quality of their predictors (i.e., when θ∗ decreases).17

Armed with Lemma 1, we can now derive a speculator’s optimal stopping rule given

that other speculators follow the stopping rule θ∗. Let θ̂i be an arbitrary stopping rule

17This means that speculators’ information acquisition strategies are substitutes in our model, as
usual in models of information acquisition in finance.
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for speculator i. The speculator’s continuation utility (the expected utility of launching

a new round of exploration) after turning down a predictor is:

J(θ̂i, θ∗) = exp(ρc)
(
Λ(θ̂i; θ, α) E

[
g(θ, θ∗)

∣∣∣θ ≤ θ ≤ θ̂i
]

+ (1− Λ(θ̂i; θ, α))J(θ̂i, θ∗)
)

(14)

The first term (exp(ρc)) in eq.(14) is the expected utility cost of running an additional

search. The second term is the likelihood that the next exploration is successful times

the average trading value of a predictor conditional on the type of this predictor being

satisficing (i.e., in [θ, θ̂i]). Finally, the third term is the likelihood that the next exploration

is unsuccessful time the speculator’s continuation utility when she turns down a predictor.

Solving eq.(14) for J(θ̂i, θ∗), we obtain:

J(θ̂i, θ∗) =
[

exp(ρc)Λ(θ̂i; θ, α)
1− exp(ρc)(1− Λ(θ̂i; θ, α))

]
︸ ︷︷ ︸
Expected Utility Cost from Exploration

×E
[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
︸ ︷︷ ︸
Expected Utility from Trading

(15)

The continuation value of the speculator when she turns down a predictor does not depend

on the outcomes of past explorations because these outcomes do not affect the speculator’s

opportunity set in future explorations. Thus, J(θ̂i, θ∗) is also the speculator’s ex-ante

expected utility before starting any exploration in period 0. As explained previously, it is

the product of the expected utility cost from explorations and the expected utility from

trading.

Now suppose that speculator i has obtained a predictor with quality θ. If the spec-

ulator stops exploring the data at this stage, her expected utility is g(θ, θ∗) (her cost of

exploration to obtain this predictor is sunk). If instead the speculator decides to launch

a new round of exploration, her expected utility is J(θ̂i, θ∗). Thus, her optimal decision

is to stop searching for a predictor if g(θ, θ∗) ≥ J(θ̂i, θ∗) and to keep searching otherwise.

As g(θ, θ∗) decreases with θ, the optimal stopping rule of the speculator, θ∗i , is the value

of θ such that the speculator is just indifferent between these two options:

g(θ∗i , θ∗) = J(θ∗i , θ∗). (16)

The solution to this equation, θ∗i (θ∗) = θ∗, is unique (see the proof of Proposition 2). In
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a symmetric equilibrium, it must be that θ∗i (θ∗) = θ∗. We deduce that θ∗ solves:

g(θ∗, θ∗) = J(θ∗, θ∗). (17)

Using the expression for J(., θ∗) in eq.(14), we can equivalently rewrite this equilibrium

condition as:

F (θ∗) = exp(−ρc), (18)

where:

F (θ∗) ≡ α
∫ θ∗

θ
r(θ, θ∗)φ(θ)dθ + (1− Λ(θ∗; θ, α)) , for θ∗ ∈

[
θ,
π

2

]
, (19)

with

r(θ, θ∗) ≡ g(θ, θ∗)
g(θ∗, θ∗) =

(
τ(θ∗)τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

, (20)

where the second equality in eq.(20) follows from eq.(13). Observe that Assumption A.1

implies that F (θ∗) is well defined even when θ = 0. The next proposition shows that there

is a unique interior solution (i.e., θ∗ ∈ (θ, π2 )) to the equilibrium condition (18) when c is

small enough.

Proposition 2. There is a unique symmetric interior equilibrium of the exploration phase

in which all speculators are active (i.e., a unique stopping rule such that θ < θ∗ < π/2

common to all speculators) if and only if F (π/2) < exp(−ρc) < 1.

When exp(−ρc) ≤ F (π/2), there is no symmetric interior equilibrium. However, in

this case, one can build an equilibrium in which only a fraction of all speculators are

active, i.e., search for a predictor and trade (provided that c is not too large of course).

In this equilibrium, active speculators search for a predictor with a stopping rule equal

to θ∗ = π/2 while others remain completely inactive (do not search and do not trade).

Moreover, the fraction of speculators who are active is such that all speculators are

indifferent between being active or not. Henceforth,we focus on the case in which the

equilibrium is interior (i.e., F (π/2) < exp(−ρc) < 1 because (i) we are interested in what

happens when the cost of exploration becomes small and (ii) this shortens the exposition.

18

Electronic copy available at: https://ssrn.com/abstract=3710495



4.2 Data abundance, computing power and optimal data min-

ing.

We now analyze how data abundance (a decrease in θ and/or α) and computing power

(a decrease in c) affect the quality of the worst predictor on which speculators trade

in equilibrium, i.e., τ(θ∗). This is important because this quality determines the range

of predictors used in equilibrium and ultimately several equilibrum outcomes of interest

(e.g., asset price informativeness).

Proposition 3. A decrease in the cost of exploration, c, always reduces the stopping rule

θ∗ used by speculators in equilibrium (∂θ∗/∂c > 0). Thus, greater computing power raises

the quality, τ(θ∗), of the worst predictor used by speculators in equilibrium.

The economic mechanism for this finding is as follows. Holding θ∗ constant, a decrease

in the per-exploration cost, c, directly reduces the expected utility cost of launching a

new exploration after finding a predictor (the first term in bracket in eq.(15)). Hence, it

raises the value of searching for another predictor after finding one (i.e., J(θ∗, θ∗)). This

direct effect induces speculators to be more demanding for the quality of their predictor

and therefore works to decrease θ∗. One indirect consequence of this behavior is that,

on average, speculators trade more aggressively on their signal (the “competition effect”)

because their predictors are better on average and therefore they face less uncertainty on

the asset payoff. As a result, price informativeness increases. This indirect effect reduces

the expected utility from trading on a satisficing predictor (the second term in bracket in

eq.(15)) and therefore dampens the direct positive effect of a decrease in c on the value

of searching for a better predictor after finding one. However, it is never strong enough

to fully offset it.

We now consider the effect of data abundance on speculators’ optimal stopping rule.

Remember that data abundance has two consequences in the model: (i) it pushes back

the data frontier by raising the quality of the best predictor and (ii) it increases the risk

for speculators of using datasets which, after exploration, proves to be useless (the needle

in the haystack problem).

Proposition 4.

1. A decrease in the fraction of informative datasets, α, always increases speculators’

stopping rule, θ∗, in equilibrium (∂θ∗/∂α < 0). Thus, the needle in the haystack
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problem reduces the quality, τ(θ∗), of the worst predictor used by speculators in

equilibrium.

2. The effect of a decrease in θ on speculators’ stopping rule is ambiguous. However,

when θ is less than θtr(c), a decrease in θ always increases speculators’ stopping

rule in equilibrium (∂θ∗/∂θ < 0 for θ < θtr(c)) and reduces the quality, τ(θ∗), of

the worst predictor used by speculators in equilibrium.

When the needle in the haystack problem becomes more acute, speculators become

less demanding for the quality of their predictors. Intuitively, a drop in α increases the

expected utility cost of launching a new exploration after finding a predictor (the first

term in bracket in eq.(15)) because it reduces the likelihood of finding a predictor in a

given exploration (Λ). Thus, after turning down a predictor, speculators expect to go

through a larger number of explorations rounds before finding a satisficing predictor,

which increases their total cost of search. This direct effect induces speculators to be less

demanding for the quality of their predictor and therefore works to increase θ∗ (reduce

τ(θ∗)). Indirectly, this behavior reduces asset price informativeness and therefore raises

the expected utility from trading on a satisficing predictor (the second term in bracket

in eq.(15)), which alleviates the direct negative effect of a decrease in α on the value of

searching for a better predictor after finding one. However, this indirect effect is never

strong enough to fully offset the direct effect. In sum, qualitatively, the effect of a drop

in α is similar to that of an increase in the per exploration cost.18

The effect of pushing back the data frontier on speculators’ stopping rule is more com-

plex. Counterintuitively, it can lead speculators to trade on predictors of worse quality,

even though the quality of the best predictor increases. The reason is as follows. On the

one hand, pushing back the data frontier increases the chance of finding a satisficing pre-

dictor holding the search strategy, θ∗ constant (Λ(θ∗; θ, α) increases when θ goes down).

This effect reduce the expected number of rounds required to find a predictor and there-

fore reduces the expected utility cost of searching for a new predictor after rejecting one.

Therefore, it increases the continuation value of searching for a predictor (see eq.(15).

18Given this, one might be tempted to capture the needle in the haystack effect by just considering
the effect of increasing c (on the ground that it becomes more costly to find good datasets). But
this approach is inconsistent with the argument that progress in information technology has reduced
information processing costs. This point illustrates the importance of having separate parameters to
capture the effects of (i) greater information processing power (a decrease in c in our model) on the one
hand and (ii) data abundance on the other hand.
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On the other hand, a push back of the data frontier affects the expected utility from

trading for two reasons. First, it gives the possibility to obtain more informative predictors

than those existing before (“the hidden gold nugget effect”), which raises the expected

utility from trading on a satisficing predictor. Second, it increases price informativeness

(other things equal, I(θ∗; θ, α) increases when θ decreases) because speculators who obtain

the most informative predictors trade even more aggressively than before the change in

the data frontier. As a result, speculators’ aggregate demand and therefore the asset

price are more informative, which reduces the value of being informed (“the competition

effect”). This effect reduces the expected utility from trading on a satisficing predictor.

Thus, the sign of a change in the data frontier (holding θ∗ constant) on the expected

utility from trading is ambiguous.

To analyze this more formally, we differentiate the expected utility from trading,

E [g(θ, θ∗)| θ ≤ θ ≤ θ∗], with respect to θ (holding θ∗ constant):

∂ E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]
∂θ

= αφ(θ)
Λ(θ∗; θ, α)

E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]− g(θ, θ∗)︸ ︷︷ ︸
Hidden Gold Nugget Effect; <0

+
∫ θ∗

θ

∂g(θ, θ∗)
∂θ

φ(θ)dθ︸ ︷︷ ︸
Competition Effect;>0


(21)

When θ becomes small enough, the competition effect dominates the hidden gold

nugget effect and the expected utility from trading on a satisficing predictor drops. The

second part of Proposition 4 shows that there is always a sufficiently low value of θ such

that this drop more offsets the reduction in the expected utility cost of finding a predictor.

When this happens, pushing back the frontier further reduces the continuation value of

exploration. Hence, speculators choose a less stringent stopping rule in equilibrium and

some optimally choose to trade on less informative predictors (τ(θ∗) decreases).

We illustrate Proposition 4 by considering two particular specifications of the distribu-

tion for θ. In specification 1, we assume that φ(θ) = 3 cos(θ) sin2(θ) while in specification

2 we assume that φ(θ) = 5 cos(θ) sin4(θ). These specifications are convenient because they

enable us to compute all variables of interest in closed forms (see Section 4 in the internet

appendix). In the second specification, the distribution of θ has a much fatter right-tail in

the first case (see Section 4 in the internet appendix).19 Figure 2 below shows the effect

19Assumption A.1 is satisfied in both examples.
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of a change in the exploration cost (c) and the data frontier (θ) on the equilibrium value

of θ∗. In either case, as implied by Proposition 4, a push back of the data frontier initially

raises the quality of the worst predictor used by speculators in equilibrium (reduces θ∗)

but, eventually, at some point this effect is reversed.
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Figure 2: The left hand-side graphs plot the equilibrium search threshold, θ∗, as a
function of the search cost, c (other parameter values are θ = π/8, ρ = σ2 = ν2 = 1).
The right hand-side graphs plot the equilibrium search threshold, θ∗, as a function of the
data frontier, θ (other parameter values are c = 0.03, ρ = σ2 = ν2 = 1). In the two upper
graphs, we assume that φ(θ) = 3 cos(θ) sin2(θ) (Case 1) while in the two lower graphs we
assume that φ(θ) = 5 cos(θ) sin4(θ) (Case 2).

Proposition 5. In equilibrium, the quality of the worst predictor used in equilibrium,

τ(θ∗), increases with the volume of noise trading, ν2, or the volatility of the asset payoff,

σ2.

An increase in the volume of noise trading reduces the informativeness of the equilib-

rium price. This effect raises the expected value of trading, holding the search policy, θ∗,

constant. Thus, the continuation value from searching increases and speculators become

therefore more demanding for their predictors (θ∗ decreases). The intuition for the effect

of the volatility of the asset is identical.
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5. Testable Implications

5.1 Data Abundance, Computing Power, and Managerial Skills

As explained in the previous section, the model has implications for the effects of data

abundance and computing power on the distribution of the quality of predictors used

by speculators in equilibrium, in particular the lower bound of this distribution τ(θ∗).

To test these implications, one can use data on active funds’ holdings and their returns

on these holdings (e.g., as in Kacperczyk et al. (2016)) and regress the position of each

fund (speculator) in a given asset (xi(sθ, p∗) in the model), at a given point in time on

their return on this position ((ω− p∗) in the model). In the model, the coefficient of this

regression, βθ, is:

βθ = Cov(x(sθ, p∗), ω − p∗)
Var[ω − p∗] = τ(θ)

ρ
, (22)

where the last equality follows from Proposition 1. Intuitively, βθ is a measure of a

speculator’s stock picking ability or investment “skills”.20 Equation (22) shows that,

holding risk aversion constant, a ranking of speculators based on their stock picking

ability (measured by βθ) is identical to a ranking based on the (unobservable) quality of

their predictors, τ(θ). This is intuitive: Speculators with better predictors should display

a better stock picking ability.

Thus, one could test the implications of Propositions 3 and 4 by ranking speculators

(e.g., quantitative asset managers) based on their stock picking ability (measured by

βs) and test whether shocks to computing power or data abundance have the effects

predicted by Propositions 3 and 4.21 For instance, one could test whether positive shocks

to computing power increase the stock picking ability (measured by β) of the funds with

the lowest βs’ (say in the lowest decile) while positive shocks to data abundance (e.g.,

the availability of new alternative data as in Zhu (2019)) have the opposite effect (even

though they may increase the stock picking ability of the best performing funds). One

20Kacperczyk et al. (2016) measure mutual funds’ stock picking ability in a similar way. See Section
2.1 in their paper.

21Alternatively, one could proceed as in Kacperczyk and Seru (2007) to measure asset managers’
investment skills and rank these. Specifically, Kacperczyk and Seru (2007) measures the precision of
asset managers’ signals (their “skill”) by the sensitivity of their holdings to public information. The
higher is this sensitivity, the lower is the precision of a manager’s private signals. This would also be the
case in a simple extension of our model in which speculators receive a public signal at date 1 in addition
to their private signal sθ.
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could also test whether the difference between the stock picking ability of speculators with

the lowest and highest ability is reduced in periods of heightened fundamental volatility

or noise trading, as implied by Proposition 5.

Kacperczyk and Seru (2007) (and others) find that there is considerable heterogeneity

in asset managers’ skills (see their Table I). Our model suggests that one source of het-

erogeneity might be managers’ luck in their search for a predictor, rather than differences

in innate abilities to find investment ideas or effort. Indeed, in our model, all speculators

are ex-ante identical and choose the same effort in terms of search in the sense that their

stopping rule (and therefore expected total cost of search) is identical. Yet, they end up

trading on predictors of different qualities because the outcome of the search process is

random. This implies in particular that a speculator might end up paying a large total

search cost (nic) and yet appear as having low skills (trading on a signal of poor quality).

5.2 Data Abundance, Computing Power, and Asset Price In-

formativeness

Progress in information technologies have improved investors’ ability to forecast asset

payoffs in two ways. On the one hand, these technologies reduce the cost of filtering

out noise from raw data (e.g., greater computing power enables asset managers to use

powerful statistical techniques, such as deep neural networks, to form their forecasts). On

the other hand, they allow to collect and store increasing volume of data. Propositions 6

and 7 show that these two different distinct dimensions of technological progress do not

affect asset price informativeness in the same way.

Proposition 6. In equilibrium, an increase in computing power (a decrease in c) raises

the average quality of speculators’ predictors and therefore price informativeness.

Greater computing power induces speculators to be more demanding for the quality

of their predictors (to put more effort in the search of good predictors) because it re-

duces the cost of exploring new data to obtain a predictor (see Proposition 3). Thus,

speculators obtain signals of higher quality on average. Hence, on average, they trade

more aggressively on their signals, their aggregate demand for an asset becomes more

informative and, for this reason, price informativeness increases (see eq.(11)).

Proposition 7.
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1. In equilibrium, an improvement in the quality of the most informative predictor

(a decrease in θ) raises the average quality of speculators’ predictors and therefore

price informativeness.

2. In equilibrium, a decrease in the proportion of informative datasets (a decrease in

α) reduces the average quality of speculators’ predictors and therefore price infor-

mativeness.

Thus the effect of data abundance on price informativeness is ambiguous. Holding

α constant, data abundance (a decrease in θ) improves asset price informativeness, even

when it induces speculators to be less demanding for the quality of their predictors (i.e.,

when a decrease in θ reduces τ(θ∗); see Proposition 4). The reason is that the negative

effect of the drop in the quality of the worst predictor used in equilibrium (if it happens)

on the average quality of speculators’ signals is never sufficient to offset the positive effect

of the improvement in the quality of the best predictor in equilibrium. As a result, a push

back of the data frontier raises the average quality of predictors and speculators’ average

trading aggressiveness. In contrast, holding θ constant, data abundance (a decrease in

α) leads speculators to be less demanding for the quality of their predictors. As a result,

the average quality of predictors drops, speculators’ aggregate demand is less informative

and therefore price informativeness drops.

In reality, data abundance is likely to both push back the data frontier (reduce θ) and

exacerbate the needle in the haystack problem (reduce α). As a result, the net effect of

data abundance on the long run evolution of asset price informativeness is ambiguous.

Figure 3 illustrates this point with a numerical example in which we assume that α

increases with θ (specifically, we assume that α = min{1, 0.32 + 0.8 × θ}). Thus, data

abundance (a drop in θ) generates both an increase in the quality of the best predictor and

a needle in the haystack problem. As shown by Figure 3, when these two dimensions of

data abundance operate jointly, price informativeness initially rises with data abundance

(starting from a large θ) until it reaches a peak after which it decreases. The reason is

that when θ becomes small, both dimensions of data abundance induce speculators to be

less demanding for the quality of their predictors (see Proposition 4), which eventually

impairs price informativeness.
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Figure 3: This graph shows the evolution of price informativeness in equilibrium, I(θ∗, θ)
as a function of the data frontier, θ when φ(θ) = 3 cos(θ) sin2(θ) and α = min{1, 0.32 +
0.8 ∗ θ}. Other parameter values, c = 0.03, ρ = 1, σ2 = 1, ν2 = 1.

Interestingly, consistent with these implications, empirical findings regarding the effect

of progress in information technologies on price informativeness are ambiguous. For

instance, Bai et al. (2016) find that the price stocks in the S&P500 has become more

informative since the 60s while Farboodi et al. (2019) find the opposite patterns for

all stocks, except for large growth stocks. Using controlled experiments, Zhu (2019)

finds that the availability of alternative data (satellite images and consumer transactions

data) improves stock price informativeness while Goldstein et al. (2020) find a drop

in the sensitivity of corporate investment to stock prices after the digitization of firms’

regulatory filings, which they explain by a decline in the production of private information.

Our results suggests that designing tests that only vary computing power holding data

abundance constant or vice versa would help to make progress in understanding why

information technologies matter for asset price informativeness.

5.3 Data abundance, Computing Power and Trading Profits

In this section, we analyze how data abundance and computing power affects the distri-

bution of trading profits for speculators. In equilibrium, the total trading profit (“excess
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return”), π(sθ), of a speculator with type θ on his position in the risky asset is:

π(sθ) = x∗(sθ, p∗)× (ω − p∗), (23)

where x∗(sθ, p∗) and p∗ are given by eq.(8) and eq.(9), respectively. Using eq.(8), we

deduce that:

x∗(sθ, p∗) = 1
ρσ2

(
τ(θ)(ω − p∗) + τ(θ)1/2εθ

)
. (24)

Thus, the expected trading profit of a speculator with type θ is:

π̄(θ) = E[π(sθ)|θ] = τ(θ)
ρσ2 Var[ω − p∗ | θ] = τ(θ)

ρσ2I(θ∗, θ) . (25)

It follows that the unconditional expected trading profit of all speculators (the average

trading profit across all speculators) is:

E[π̄(θ)] = τ̄(θ∗; θ, α)
ρσ2I(θ∗, θ) = 1

ρσ2

(
τω

τ̄(θ∗; θ, α) + τ̄(θ∗; θ, α)
ρ2ν2

)−1

, (26)

and the variance of trading profits for speculators (the dispersion of trading profits across

all speculators) is:

Var[π(θ)] = Var[τ(θ) | θ < θ < θ∗]
σ4ρ2I2(θ∗, θ) . (27)

Empirically, E[π(θ)] and Var[π(θ)] could be measured by the cross-sectional mean and

variance of trading profits of active funds (for instance in a given quarter).

An increase in the average quality of predictors (τ̄(θ∗; θ, α) has an ambiguous effect

on speculators’ expected profit. On the one hand, this increase improves speculators’s

stock picking ability (see Section 5.1). On the other hand, it increases asset price in-

formativeness because it makes speculators’ aggregate demand more informative. As

shown by eq.(26), the first effect raises speculators’ expected profit while the second re-

duces it. Using eq.(26), it is easily shown that the first effect dominates if and only if

τ̄(θ∗; θ, α) ≤ τωρ
2ν2. Thus, speculators’ average expected profit reaches its maximum for

τ̄(θ∗(θ, c, α), θ, α) = τωρ
2ν2 if there are values of (θ, c, α) for which this equality holds

(we write θ∗ as a function of θ,c,α to emphasize that it depends on the value of these

parameters). We deduce the following result.

Proposition 8. Suppose θ > τωρ
2ν2.
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1. If τ̄(θ∗(θ, 0, α), θ, α) > τωρ
2ν2 then speculators’ expected profit is a hump shaped

function of c, which reaches its maximum for c = ĉ (characterized in the proof of

the proposition). Otherwise, speculators’ expected profit decreases with c and reaches

its maximum for c = 0

2. If τ̄(θ∗(0, c, α), 0, α) > τωρ
2ν2 then speculators’ expected profit is a hump shaped

function of θ, which reaches its maximum for θ = θ̂ (characterized in the proof

of the proposition). Otherwise, speculators’ expected profit decreases with θ and

reaches its maximum for θ = 0.

3. If τ̄(θ∗(θ, c, 1), θ, 1) > τωρ
2ν2 then speculators’ expected profit is a hump shaped

function of α, which reaches its maximum for α = α̂ (characterized in the proof

of the proposition). Otherwise, speculators’ expected profit increases with α and

reaches its maximum for α = 1

Thus, data abundance or greater computing power do not necessarily improve spec-

ulators’ expected trading profit. Consider first a decrease in c or θ. Such a decrease

leads speculators to be more demanding for the quality of their predictors and raises the

average quality of their signals. However, for this reason, it raises price informativeness.

The first effect has a positive effect on speculators’ expected profit while the second has

a negative effect. The latter effect always dominates when c or θ are small enough. A

decrease in α has exactly the opposite effect: It reduces the average quality of speculators’

signals and price informativeness. The first effect has a negative effect on speculators’

expected profit while the second has a positive effect. The former effect always dominates

when α is small enough.

Overall, these findings mean that there is always a point at which further improve-

ments in computing power or data availability reduces speculators’ expected profit, either

because price informativeness becomes too high (θ < θ̂ or c < ĉ) or because the needle in

the haystack problem has a too large negative effect on speculators’ incentive to search

for good predictors, so that the average quality of their signals falls by a large amount

(α < α̂).

Now consider the effect of changes in the cost of processing data and data abundance

on the dispersion (Var[π(θ)]) of expected trading profits across speculators. Using eq.(27),

we obtain the following result.
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Proposition 9.

1. Other things equal, the dispersion of speculators’ expected trading profit decreases

when the cost of processing data goes down for c small enough (dVar[π(θ)]/dc > 0

for c sufficiently close to zero).

2. Other things equal, the dispersion of speculators’ expected profit increases when the

data frontier is pushed back for θ small enough (dVar[π(θ)]/dθ < 0 for θ sufficiently

close to zero).

3. Other things equal, the dispersion of speculators’ expected trading profit increases

when the fraction of informative datasets decreases (α decreases).

To understand the first part of the proposition, suppose that c = 0. In this case, all

speculators search for a predictor until they find one with the highest possible quality,

θ∗ = θ. As a result, all speculators trade on predictors of the same quality (Var[τ(θ) | θ <

θ < θ∗] = 0) and therefore the dispersion of expected trading profits is nil, as can be seen

by inspection of the expression for Var[π(θ)] (eq.(27)). Now consider a small increase

in c starting from the situation in which c = 0. This increase raises θ∗ and therefore

the dispersion of the quality of predictors used by speculators (Var[τ(θ) | θ < θ < θ∗]

increases). As a result, the dispersion of trading profits increases as well. This increase is

amplified by the fact that price informativeness goes down, which works to increase the

dispersion in trading profits as well (see the expression for Var[π(θ)] in eq.(27)). As these

effects still hold for larger values of c, we conjecture that the first part of Proposition

9 holds for all values of c but we have not been able to show it analytically (numerical

simulations suggest that our conjecture is correct; see Figure 4 below for an example).

When θ < θtr(c), the quality of the best predictor increases while the quality of

the worst predictor used by speculator decreases when data become more abundant (see

Proposition 4). Thus, the range of quality for the predictors used in equilibrium gets

wider. This effect increases the dispersion of the quality of predictors used by specula-

tors (Var[τ(θ)] increases), which increases the dispersion of speculators’ expected profits,

holding price informativeness constant. In equilibrium, price informativeness improves

but for θ small enough, this second effect is not sufficient to offset the first. This explains

the second part of the proposition.
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The effect of a decrease in α is more straightfoward. Indeed, such a decrease leads

speculators to be less demanding for the quality of their predictors (θ∗ increases when α

decreases). Thus, a decrease in α enlarges the dispersion of the quality of speculators’

predictors. As it also reduces price informativeness, it follows from eq.(27) that the

dispersion of speculators’ trading profits increases.

In sum, data abundance and improvements in computing power have similar effects

on speculators’ expected profits but can have opposite effects on the dispersion of these

profits. Figure 4 illustrates this point using the same specifications for the density of θ

as in Figure 2. For these specifications, a decrease in the cost of processing data always

reduces the dispersion of expected trading profits across speculators. In contrast, the

dispersion expected trading profits increases when θ decreases.
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Figure 4: The left hand-side graphs plot the variance of speculators’ expected profits,
Var[π(θ)], as a function of the search cost, c (other parameter values are θ = π/5, ρ =
1, σ2 = 1, ν2 = 1). The right hand-side graph plots the variance of speculators’ expected
profits as a function of the data frontier, θ (other parameter values are c = 0.05, ρ =
1, σ2 = 1, ν2 = 1). In the upper graphs, we assume that φ(θ) = 3 cos(θ) sin2(θ) (Case 1)
while in the lower graphs we assume that φ(θ) = 5 cos(θ) sin4(θ) (Case 2).

5.4 Data Abundance, Computing Power and Crowding

Crowding is the tendency for investors to follow the same trading strategy and exploit the

same signals. In this section, we study how data abundance and computing power affect
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the correlation between speculators’ equilibrium positions, a measure of crowdedness

of their trading strategy.22 Specifically, let Cov(x(sθi , p∗), x(sθj , p∗)) be the covariance

between the equilibrium holdings of a speculator with type θi and a speculator with type

θj. Using eq.(24), we obtain:

Cov(x∗(sθi , p∗), x∗(sθj , p∗)) = τ(θi)τ(θj)
σ4ρ2 Var[ω − p] = τ(θi)τ(θj)

σ4ρ2I(θ∗, θ) . (28)

We deduce that the pairwise correlation between the equilibrium positions of a speculator

with type θi and a speculator with type θj is:

Corr(x∗(sθi , p∗), x∗(sθj , p∗)) =
(

1 + I(θ∗, θ)
τ(θi)τω

)− 1
2
(

1 + I(θ∗, θ)
τ(θj)τω

)− 1
2

(29)

Thus, holding the quality of the predictors used by two speculators constant, their po-

sitions become less correlated when price informativeness is higher. The reason is that

speculators trade on the component of their forecast of the asset payoff that is orthogonal

to the price. This component reflects both the component of the fundamental, ω, that is

not reflected into the equilibrium price and the noise in speculators’ signal. The higher

the first component relative to the second, the higher the pairwise correlation in specula-

tors’ positions in the asset. As the price becomes more informative, the first component

becomes smaller and smaller relative to the noise component and as a result, the pairwise

correlation between speculators’ positions drops. Using Proposition 7, we deduce the

following result.

Proposition 10.

1. Greater computing power (a decrease in c) reduces the pairwise correlation of spec-

ulators’ positions.

2. Data abundance has an ambiguous effect on the pairwise correlation of speculators’

positions. It reduces it if it improves price informativeness but increases it other-

wise.

22Shanta Putchler, the CEO of Mannumeric (a quantitative investment fund) notes that: “The single
largest contributor to crowding is the simple fact that investors tend to do the same sorts of things. There
is a real propensity for investors to analyse the same datasets, with the same statistical techniques, and
hence end up with largely overlapping positions.” See https://www.man.com/maninstitute/crowding.
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This proposition suggests again that data abundance and computing power do not

necessarily have the same effects. Testing the previous result requires measuring the

pairwise correlation of speculators’ positions, holding the quality of their signal constant.

One possibility is to estimate the cross-sectional distribution of funds’ predictors quality

using the method described in Section 5.1 and analyze the effect of shocks to computing

power or data abundance on the correlation in the positions of funds in different quantiles

of the distribution.

6. Speculators’ Welfare and Data Abundance

In this section, we analyze how data abundance and computing power affects speculators’

welfare, measure by their ex-ante expected utility, which, in equilibrium, is J(θ∗, θ∗) =

g(θ∗, θ∗) (see Section 4.1). That is, each speculator’s expected utility is just equal to the

expected utility from trading on the worst predictor used in equilibrium. The reason is

that the increase in the expected utility from trading associated with further explorations

for a speculator who has found a predictor with type θ∗ is just offset by the expected

utility cost of further explorations.

As can be seen from eq.(13), the data frontier, θ affects speculators’ ex-ante expected

utility only through its effects on (i) the quality of the worst predictor, τ(θ∗) and (ii)

the informativeness of the asset price, I(θ∗; θ, α). Now, when θ < θtr(c), a decrease

in θ raises price informativeness (Proposition 7) and reduces the quality of the worst

predictor (Proposition 4). Thus, it unambiguously reduces speculators’ expected utility

because g(θ∗, θ∗) decreases with the informativeness of the asset price and increases with

the quality of the worst predictor (τ(θ∗).

Proposition 11. When θ < θtr(c), pushing back the data frontier (a decrease in θ)

reduces speculators’ expected utility.

An increase in computing power raises the quality of the worst predictor and price

informativeness in equilibrium. Thus, its effect on speculators’ welfare is ambiguous.

Numerical simulations show that the first effect dominates unless c becomes very small.

Thus, in contrast to a push back of the data frontier, an improvement in computing power

raises speculators’ welfare. Figure 5 illustrates this point using same numerical examples

as in Figure 2. For similar reasons, the needle in the haystack problem (a decrease in α)
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has an ambiguous effect on speculators’ welfare: It reduces price informativeness but also

decreases the quality of the worst predictor. The first effect improve speculators’ welfare

while the second reduces it. Numerical simulations show that the second effect dominates

for α low enough.
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Figure 5: This graph shows speculators’ ex-ante expected utility as a function of θ and
c when φ(θ) = 3 cos(θ) sin2(θ) (with other parameter values being set at ρ = 1, σ2 =
1, ν2 = 1).

Thus, data abundance can make speculators worse off in equilibrium. One might then

wonder whether it would not be optimal for a speculator to ignore new data. This is

not the case, however. To see this, suppose that θ drops from θ0 to θ1 < θ0 but that

speculators agree not to take advantage of the new data, i.e., to behave as if θ = θ0

(in particular, they use the stopping rule θ∗(θ0)). A speculator’s expected utility is then

given by J(θ∗(θ0, c, α), θ∗(θ0, c, α)). When θ0 < θtr, this decision is collectively optimal for

speculators since their welfare decreases when θ is reduced (Proposition 11). However, it is

individually optimal for each speculator to deviate from the collective agreement. Indeed,

one can show (using eq.(15)) that, holding holding θ∗(θ0, c, α) constant, a speculator’s

expected utility increases when the quality of the best predictor, θ, is improved. Thus,

if new datasets open the possibility that the quality of the best predictor improves, each

speculator will individually find optimal to use these datasets, if she expects others not

to do so. But then the equilibrium stopping rule must shift from θ∗(θ0) to θ∗(θ1).23

Thus, data abundance can be “excessive” from speculators’ viewpoint in the sense

that they would be better off if the data frontier could not be improved. We now show

that speculators’ average investment in search is also excessive in the sense that, holding

all exogenous parameters constant, they would be better off if they could commit to use

23This logic is similar to the arm’s race to invest in trading speed for high frequency traders in Biais
et al. (2015).
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a less demanding stopping rule (and therefore predictors of lower quality on average).

To see this, let assume that speculators can collectively choose a stopping rule, θr and

commit to this choice. In this case, speculators would optimally choose the stopping rule

θ∗∗r such that:

θ∗∗r = arg max
θr

J(θr, θr). (30)

Proposition 12. In equilibrium, the stopping rule used by speculators is more demanding

than the optimal stopping rule with commitment, that is, θ∗ < θ∗∗r . Thus, in equilibrium,

speculators’ investment in search for predictors, E(nic), is too high relative to the invest-

ment that would maximize their welfare if they could collectively choose their stopping

rule.

Thus, there is excessive investment in search in equilibrium from speculators’ view-

point. The reason is as follows. Suppose that all speculators search for predictors with a

stopping rule equal to θ∗∗. Now consider a speculator who draws a predictor with quality

θ∗∗. Her expected trading profit is less than her expected utility of continuing search-

ing for another predictor, assuming that other speculators keep searching with the same

intensity (i.e., the same stopping rule θ∗∗). Formally:

g(θ∗∗, θ∗∗) < J(θ∗∗, θ∗∗).

Thus, the speculator has an incentive to deviate from the stopping rule by increasing

her search intensity. However, in doing so, the speculator ignores the fact that this must

be true for all speculators and that if all speculators deviate, there will all be worse

off. Instead, a central planner organizing the search for predictors would internalize this

effect.

7. Conclusion

Progress in information technologies enable investors to have access to more data (data

abundance), both in terms of volume and diversity, and greater computing power, so

that they can deploy more powerful techniques to extract information from raw data. In

this paper, we propose a new model of information acquisition to analyze separately the

effects of these two distinct dimensions of technological progress.
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In our model, speculators search (mine data) for predictors through trials and opti-

mally stop searching when they find a predictor with a signal-to-noise ratio larger than

an endogenous threshold. As the outcome of speculators’ search process is random, spec-

ulators discover different predictors. Thus, even though they are homogenous ex-ante,

speculators are heterogeneous ex-post in terms of the quality of their predictors, their

performance, their holdings etc. In this way, our model can generate predictions about

the effects of data abundance and computing power on the distribution of asset man-

agers’ skills (precisions of their signals), the distribution of their trading profits or the

correlations in their holdings. Moreover, asset price informativeness is determined by

speculators’ optimal data mining strategy because this strategy determines the average

quality of their signals and thereby the informativeness of their aggregate demand.

The main message of our model is that the effects of data abundance and greater com-

puting power are not the same. For instance, greater computing power always induces

speculators to be more demanding for the minimal quality of their predictors while this

is not necessarily the case for data abundance. As a result, positive shocks to computing

power improve and homogenize predictors’ quality across speculators and, for this reason,

improve price informativeness. In contrast, data abundance can result in a greater dis-

persion of predictors’ quality across speculators and even a drop in price informativeness.
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A. Proofs

Proof of Proposition 1.

We show that x∗(sθ, p) and p∗ as given by eq.(8) and eq.(9) form an equilibrium. First,

suppose that x∗(sθ, p) is given by x∗(sθ, p) = a(θ)(ŝ(θ)− p) . In this case, the aggregate

demand for the asset is given by:

D(p) =
∫
x∗(sθ, p) + η = ā(ω − p) + η, (31)

where ā is the average value of a(θ) across all speculators (ā = E(a(θ) | θ ∈ [θ, θ∗]. Hence,

observing D(p) (and p) is informationally equivalent to observing ξ = ω + ā−1η. Thus:

p∗ = E(ω | D(p)) = E(ω | η) = ( σ2

σ2 + ā−2ν2 )ξ = ( τξ
τω + τξ

)ξ, (32)

where τξ ≡ ā2

ν2 is the precision of ξ as a signal about ω.

Now consider speculators. Using standard calculations in the CARA gaussian frame-

work, we deduce that the optimal demand for the risky asset of a speculator with signal

sθ is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

, (33)

As speculators have rational expectations on the price, they anticipate that it is linear in

ξ, as in eq.(32). Moreover, let ŝθ ≡ ω + τ(θ)− 1
2 εθ, so that sθ = cos(θ)ŝθ. Then

E[ω|sθ, p] = E[ω|ŝθ, ξ]. (34)

and

Var[ω|sθ, p] = Var[ω|ŝθ, ξ]. (35)

Note that the precision of ŝθ is τ(θ)τω. Thus, as all variables are normally distributed

and εθ and η (the noises in ŝθ and ξ) are independent, standard calculations yield:

E[ω|ŝθ, ξ] = τ(θ)τωŝθ + τξξ

τω + τ(θ)τω + τξ
. (36)

and

Var[ω|sθ, p] = 1
τω + τ(θ)τω + τξ

. (37)
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Thus, we can rewrite eq.(33) as:

x∗(sθ, p) = τ(θ)τωŝθ + τξξ − (τω + τ(θ)τω + τξ)p
ρ

, (38)

Using the fact that p = τξ
τω+τξ

ξ we deduce that:

x∗(sθ, p) = τ(θ)τω
ρ

(ŝθ − p) = τ(θ)
ρσ2 (ŝθ − p). (39)

Thus, x∗(sθ, p) is as conjectured (and as in eq.(8)) if and only if a(θ) = τ(θ)
ρσ2 . If follows

that ā = τ̄(θ)
ρσ2 . Eq.(9) and eq.(10) in the text immediately follow from substituting this

expression for ā in eq.(32).

In sum we have shown that (i) if dealers expect speculators to follow the trading

strategy x∗(sθ, p) given by eq.(8) then they set a price given by eq.(9) and (ii) if dealers

set a price given by eq.(9) then speculators follow the trading strategy x∗(sθ, p) given

by eq.(8). Thus, eq.(8) and eq.(9) form an equilibrium. More generally, it is possible to

show that this is the unique equilibrium in which speculators’ trading strategy is a linear

function of their signal and the price.

Proof of Lemma 1.

Conditional on the realization of the price at date 1 and her signal, sθ, the expected

utility of trading for an investor given her optimal trading strategy is:

E(− exp(−ρ(x∗(sθ, p)(ω − p)) | sθ, p) =

−E(exp(−ρ(x∗(sθ, p)(E(ω | sθ, p)− p)−
ρ(x∗(sθ, p))2

2 Var(ω | sθ, p)).
(40)

Substituting x∗(sθ, p) by its expression in eq.(33), we deduce that:

E([− exp(−ρ(x∗(sθ, p)(ω − p))] | sθ, p) = − exp[−(E[ω|sθ, p]− p)2

2 Var[ω|sθ, p]
] (41)

Thus:

g(θ, θ∗) = −E(exp[−(E[ω|sθ, p∗]− p∗)2

2 Var[ω|sθ, p∗]
]). (42)

For a normally distributed variable Z with mean 0 and variance σ2
Z , E[exp(−Z2)] =

(1 + 2σ2
Z)−1/2. As E[ω|sθ, p] − p, is normally distributed with mean zero, defining Z =
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E[ω|sθ, p]− p, we deduce that:

g(θ, θ∗) = −
(

1 + Var [E[ω|sθ, p∗]− p]
Var[ω|sθ, p∗]

)−1/2

(43)

Observe that:

Var[E[ω|sθ, p∗]− p∗]
Var[ω|sθ, p∗]

= ρ2 Var[ω|sθ, p∗] Var[x∗(sθ, p∗)]. (44)

Now using the expression for x∗(sθ, p∗) in eq.(39), we obtain that:

Var[x∗(sθ, p)] = τ(θ)2τ 2
ω

ρ2 [Var(ŝθ) + Var(p)− 2Cov(ŝθ, p)]. (45)

Using the expression for p∗ in eq(32) and the fact that ŝθ = ω+ τ(θ)− 1
2 εθ, we obtain after

some algebra that:

Var[x∗(sθ, p∗] = τ(θ)2τω(τω + τωτ(θ)τξ)
ρ2(τω + τξ)

. (46)

Finally, using the expression for Var[ω|sθ, p∗] in eq.(37) and the fact that τξ = τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 ,

we deduce from eq.(44) that:

Var[E[ω|sθ, p]− p]
Var[ω|sθ, p]

= ρ2σ2ν2τ(θ)
τ̄(θ∗; θ, α)2 + ρ2σ2ν2 = . (47)

This yields the expression for g(θ, θ∗).

Proof of Proposition 2.

Step 1. We first show that there is a unique solution θ∗i (θ∗) to the indifference

condition (16). Let define the function L(θ∗i , θ∗) as:

L(θ∗i , θ∗) ≡ α
∫ θ∗i

θ

g(θ, θ∗)
g(θ∗i , θ∗)

φ(θ)dθ + 1− α
∫ θ∗i

θ
φ(θ)dθ. (48)

Function L is decreasing with θ∗i because:

∂L

∂θ∗i
= α

∫ θ∗i

θ

∂

∂θ∗i

(
g(θ, θ∗)
g(θ∗i , θ∗)

)
φ(θ)dθ < 0. (49)

Now, using the expression for J() given in eq.(15), we can rewrite the indifference condi-
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tion (16) as:

L(θ∗i , θ∗) = exp(−ρc). (50)

Moreover: L(θ, θ∗) = 1 and 0 < L(π/2, θ∗) < 1. Thus, as L(θ∗i , θ∗) decreases in θ∗i ,

eq.(48) has a unique solution θ∗i (θ∗) when c is small enough.

Step 2. We now show that there is a unique solution to the equilibrium condition

F (θ∗) = exp(−ρc). Note that F (θ∗) = L(θ∗, θ∗). The derivative of F (θ∗) is

∂F

∂θ∗
= α

∫ θ∗

θ

∂r(θ, θ∗)
∂θ∗

φ(θ)dθ, (51)

where r(θ, θ∗) is defined in eq.(20). As θ∗ increases, both τ(θ∗) and I(θ∗; θ, α) decreases.

We deduce that r(θ, θ∗) decreases in θ∗.

Thus, ∂F
∂θ∗

< 0. Moreover, we have (i) F (θ) = 1, (ii) 0 < F (π/2) < 1 and (iii)

exp(−ρc) < 1 (since c > 0). Thus, there is a unique solution to the condition F (θ∗) =

exp(−ρc) and this solution is in (θ, π/2) if and only if F (π/2) ≤ exp(−ρc) < 1.

Proof of Proposition 3. In equilibrium, F (θ∗) = exp(−ρc). We have shown that

F (.) decreases in θ∗ in the proof of Proposition 2. It immediately follows from these two

observations that θ∗ increase in c.

Proof of Proposition 4.

Part 1. In equilibrium, F (θ∗) = exp(−ρc). Moreover, it directly follows from eq.(19)

that F (theta∗) decreases in α because r < 1 and we know that F (.) decreases in θ∗. It

immediately follows from these observations that θ∗ increases in α, as claimed in the first

part of the proposition.

Part 2. Remember that τ(θ) = cot2(θ) and that I(θ∗; θ, α) = τω + τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 . Using

these two observations, we can rewrite r(θ, θ∗) given in eq.(20) as:

r(θ, θ∗) = g(θ, θ∗)
g(θ∗, θ∗) =

(
ρ2σ2ν2 cot2(θ∗) + ρ2σ2ν2 + E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]2

ρ2σ2ν2 cot2(θ) + ρ2σ2ν2 + E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]2

) 1
2

. (52)
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Thus, after some algebra, we obtain:

∂r

∂θ
= ∂ E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]

∂θ
E
[
cot2(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
]

(53)

× ρ2σ2ν2(cot2(θ)− cot2(θ∗)){
ρ2σ2ν2 cot2(θ) + ρ2σ2ν2 + E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]2

} 3
2

(54)

× 1{
ρ2σ2ν2 cot2(θ∗) + ρ2σ2ν2 + E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]2

} 1
2
. (55)

Moreover:

∂ E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]
∂θ

= − φ(θ)∫ θ∗
θ φ(θ′)dθ′

(
cot2(θ)− E

[
cot2(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
])
< 0,

(56)

where the last inequality follows from the fact cot(θ) decreases with θ. We deduce from

the expression for ∂r
∂θ

that r(θ, θ∗) decreases with θ (∂r
∂θ
< 0). Using the expression for

F (.) in eq.(19), we deduce that:

∂F

∂θ
= αφ(θ)(1− r(θ, θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗

θ

∂r

∂θ︸︷︷︸
<0

φ(θ)dθ. (57)

Thus, the effect of θ on F (.) and therefore the equilibrium stopping rule θ∗ is ambiguous.

We now show that this effect becomes negative when θ is close enough to zero. To see

this, observe that eq.(56) implies that:

∂F

∂θ
< αφ(θ) + α

∫ θ∗

θ

∂r

∂θ
φ(θ)dθ (58)

We show in the internet appendix that
∫ θ∗
θ

∂r
∂θ
φ(θ)dθ goes to −∞ when θ goes to zero.Thus,

∂F
∂θ

< 0 for θ small enough. Let θtr be the smallest value of θ such that ∂F
∂θ

< 0. As in

equilibrium, F (θ∗) = exp(−ρc) and F (.) decreases in θ∗, it follows that θ∗ increases in θ

when θ < θtr, as claimed in the first part of the proposition.

Proof of Proposition 5. It follows from direct inspection of the expression for r(θ, θ∗)

given in eq.(52) that r(θ, θ∗) decreases with σ2, and ν2 because τ(θ) > τ(θ∗). Thus, from

eq.(19), we deduce that F (θ∗) decreases with σ2, and ν2. It follows from this observation,

the fact F (θ∗) decreases with θ∗ and the equilibrium condition F (θ∗) = exp(−ρc) that θ∗
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decreases with σ2 and ν2.

Proof of Proposition 6. Follows from the text after the proposition.

Proof of Proposition 7.

Part 1. When a decrease in θ reduces θ∗, it is clear that it raises the average quality

of predictors and therefore price informativeness.

Now consider the other possible case, i.e., the case in which a decrease in θ raises

θ∗, i.e., the case in which θ∗ locally decreases with θ. We know that such a case arises

when θ is low enough (see Proposition 4). We prove below that if price informativeness,

I(θ∗; θ, α), decreases in this case then each investor would individually have an incentive

to choose a more demanding stopping rule (i.e., θ∗i would decrease, which leads to a

contradiction since in equilibrium θ∗i = θ∗.

Remember that the optimal stopping rule of each speculator solves: L(θ∗i , θ∗) =

exp(−ρc) where L(θ∗i , θ∗) is given by eq.(48). We have shown that function L decreases

in θ∗i (see (eq:(49)). Next, for θ∗i ≥ θ ≥ θ, define

l(θ, θ∗i , θ∗) = g(θ, θ∗)
g(θ∗i , θ∗)

=
(
ρ2σ2ν2τ(θ∗i ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

ρ2σ2ν2τ(θ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

) 1
2

=
(
τ(θ∗i )τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

.

(59)

Clearly, l(θ, θ∗i , θ∗) clearly increases when I(θ∗; θ, α) increases. Thus, if a decrease in θ

leads to a decrease in price informativeness, i.e., I(θ∗; θ, α), it must be that l(θ, θ∗i , θ∗)

increases with θ since θ affects l(θ, θ∗i , θ∗) only through its effect on price informativeness.

This means that:
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ
> 0. (60)

Moreover, from eq.(48), we know that:

L(θ∗i , θ∗) ≡ α
∫ θ∗i

θ
l(θ, θ∗i , θ∗) + 1− α

∫ θ∗i

θ
φ(θ)dθ. (61)

Thus, the partial derivative of function L with respect to θ, taking into the collective
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response of θ∗, can be written as

∂L

∂θ
+ ∂L

∂θ∗
∂θ∗

∂θ
= αφ(θ)(1− l(θ, θ∗i , θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗i

θ

(
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ

)
φ(θ)dθ. (62)

The effect of θ, everything else equal, is given by the first term. This term is positive

and reflects the gain of new better predictors. From eq.(60), the second term is also

positive if a decrease in θ reduces price informativeness. Overall this means that in

this case L increases with θ (∂L/∂θ + (∂L/∂θ∗)/(∂θ∗/∂θ) > 0. As ∂L/∂θ∗i < 0 and

L(θ∗i , θ∗) = exp(−ρc), we deduce that θ∗i increases with θ. However in equilibrium,

θ∗i = θ∗. Thus, this implies that θ∗ increases with θ. A contradiction since we are in the

case in which θ∗ decreases with θ. This means that price informativeness cannot decrease

even in this case.

Part 2. When α decreases, τ̄(θ∗) decreases (see Proposition 4). Hence, price in-

formativeness goes down since I(θ∗; θ, α) increases with τ̄(θ∗) and depends on α only

through τ̄(θ∗) (see eq.(11). This proves the second part of the proposition. Proof of

Proposition 8. Consider the effect of θ on speculators’ expected profits. We know

from Proposition 7 that τ̄(θ∗(θ, c, α), θ, α) decreases with θ. Moreover, τ̄(θ∗(θ, c, α), θ, α)

goes to τ(π2 ) = 0 when θ goes to π
2 . Thus, if τ̄(θ∗(0, c, α), 0, α) > τωρ

2ν2, there is a

unique value of θ, denoted θ̂, such that τ̄(θ∗(θ̂, c, α), θ̂, α) = τωρ
2ν2. Thus, when θ varies,

holding other parameters constant, speculators’ expected profit reaches its maximum for

τ̄(θ∗, θ̂, α) = τωρ
2ν2. If instead, τ̄(θ∗(0, c, α), 0, α) ≤ τωρ

2ν2, then speculators’ expected

profit always increases as θ decreases. This proves Part 2 of Proposition 8.

Parts 1 and 2 can be proven in the same way. We therefore skip the proofs of these

parts for brevity. In these cases, one obtains that ĉ and α̂ are the unqiue solutions of,

respectively, τ̄(θ∗(θ, ĉ, α), θ, α) = τωρ
2ν2 and τ̄(θ∗(θ, c, α̂), θ, α̂) = τωρ

2ν2.

Proof of Proposition 9. For a given θ, when c = 0 we have θ∗ = θ and therefore

Var[π(θ)] = 0, and when c > 0, θ∗ > θ and therefore Var[π(θ)] > 0. Hence, it must be the

case that Var[π(θ)] is strictly increasing with c, for c close enough to 0.
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In order to analyze the effect of θ we consider the following expression for Var[π(θ)]:

Var[π(θ)] =
ρ2σ4ν4

(
E [cot4(θ)| θ ≤ θ ≤ θ∗]− E [cot2(θ)| θ ≤ θ ≤ θ∗]2

)
(
E [cot2(θ)| θ ≤ θ ≤ θ∗]2 + ρ2σ2ν2

)2 . (63)

For a given θ, when c = 0 we have θ∗ = θ and therefore Var[π(θ)] = 0, and when c > 0,

θ∗ > θ and therefore Var[π(θ)] > 0. Hence, it must be the case that Var[π(θ)] is strictly

increasing with c, for c close enough to 0.

In order to analyze the effect of θ we consider the following expression for Var[π(θ)]:

Var[π(θ)] =
ρ2σ4ν4

(
E [cot4(θ)| θ ≤ θ ≤ θ∗]− E [cot2(θ)| θ ≤ θ ≤ θ∗]2

)
(
E [cot2(θ)| θ ≤ θ ≤ θ∗]2 + ρ2σ2ν2

)2 . (64)

For a given search cost c, we must distinguish two cases. First, if the second moment

diverges, that is

lim
θ→0

E
[
cot4(θ)

∣∣∣ θ ≤ θ ≤ θ∗
]

= +∞, (65)

Then we also have limθ→0 Var[π(θ)] = +∞. This necessarily implies that Var[π(θ)] is

strictly decreasing with θ, for θ close enough to 0.

Second, if the second moment converges, that is E [cot4(θ)| 0 ≤ θ ≤ θ∗] < ∞, we will

show that the term E [cot4(θ)| θ ≤ θ ≤ θ∗] still increases (when θ decreases) at a rate that

is an order of magnitude larger than the other terms, and that Var[π(θ)] increases as well.

To be more specific, consider a push back of the data frontier from θ to θ−δ, with δ positive

and very small. The growth of the variance of profits is equal to −δ×d log(Var[π(θ)])/dθ,

that is

δ ×
{
−dE [cot4(θ′)| θ ≤ θ′ ≤ θ∗] /dθ + 2 E [cot2(θ)| θ ≤ θ ≤ θ∗] dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗] /dθ

E [cot4(θ)| θ ≤ θ ≤ θ∗]− E [cot2(θ)| θ ≤ θ ≤ θ∗]2

+4 E [cot2(θ)| θ ≤ θ ≤ θ∗] dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗] /dθ
ρ2σ2ν2 + E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]2

}
.

Then we will show that, for small θ’s, dE [cot4(θ′)| θ ≤ θ′ ≤ θ∗] /dθ dominates (by an

order of magnitude) dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗] /dθ.

Notice first that E [cot4(θ)| 0 ≤ θ ≤ θ∗] < ∞ implies that φ(θ) cot4(θ) can be inte-
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grated in 0. Locally around θ = 0, since cot(θ) ∼ sin−1(θ) ∼ θ−1, we have

φ(θ) cot4(θ) ∼ φ(θ) cot2(θ)θ−2 (66)

As θ−2 cannot be integrated in 0, it must be the case limθ→0 φ(θ) cot2(θ) = 0. This is a

necessary condition so that φ(θ) cot4(θ) can be integrated.

Next, we compute the derivative of the average quality in equilibrium, that is

dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗]
dθ

= ∂ E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]
∂θ

+ ∂ E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]
∂θ∗

∂θ∗

∂θ

(67)

= − φ(θ)∫ θ∗
θ φ(θ′)dθ′

(
cot2(θ)− E

[
cot2(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
])

(68)

− φ(θ∗)∫ θ∗
θ φ(θ′)dθ′

(
E
[
cot2(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
]
− cot2(θ∗)

) ∂θ∗
∂θ

(69)

According to Proposition 7, we have dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗] /dθ < 0, and according to

Proposition 4, we have ∂θ∗/∂θ < 0 for θ small enough. Hence, for θ close to 0 we have

0 < −∂θ
∗

∂θ
< φ(θ)×

(∗)︷ ︸︸ ︷
cot2(θ)− E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]

φ(θ∗) (E [cot2(θ′)| θ ≤ θ′ ≤ θ∗]− cot2(θ∗)) . (70)

The term (∗) is dominated by the term cot2(θ). Then, for θ small, there is a constant

K1 > 0 such that

0 < −∂θ
∗

∂θ
< K1φ(θ) cot2(θ). (71)

and therefore, pluging inequality (71) in equation (67), we obtain that there exists a

constant K2 such that

0 < −dE [cot2(θ′)| θ ≤ θ′ ≤ θ∗]
dθ

< K2φ(θ) cot2(θ). (72)
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Finally, we compute the derivative of the second moment in equilibrium and obtain

dE [cot4(θ′)| θ ≤ θ′ ≤ θ∗]
dθ

= − φ(θ)∫ θ∗
θ φ(θ′)dθ′

(
cot4(θ)− E

[
cot4(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
])

(73)

− φ(θ∗)∫ θ∗
θ φ(θ′)dθ′

(
E
[
cot4(θ′)

∣∣∣ θ ≤ θ′ ≤ θ∗
]
− cot4(θ∗)

) ∂θ∗
∂θ

(74)

As the order of magnitude of ∂θ∗/∂θ is (at best) φ(θ) cot2(θ), then the order of magnitude

of the second derivative, for θ small is

dE [cot4(θ′)| θ ≤ θ′ ≤ θ∗]
dθ

∼ −φ(θ) cot4(θ)∫ θ∗
θ φ(θ′)dθ′

(75)

Hence, around θ = 0,
dE[ cot4(θ′)|θ≤θ′≤θ∗]

dθ
dominates

dE[ cot2(θ′)|θ≤θ′≤θ∗]
dθ

by an order of mag-

nitude.

Proof of Proposition 10. Direct from the arguments in the text.

Proof of Proposition 11 Direct from the arguments in the text.

Proof of Proposition 12. First, notice that the search decision, θ̂ of any given specu-

lator, or the social planner, will always be such that

exp(−ρc)− 1 + α
∫ θ̂

θ
φ(θ)dθ > 0 (76)

Indeed define θmin such that the former inequality, exp(−ρc) − 1 + α
∫ θmin
θ φ(θ)dθ = 0,

if any. For θ < θmin, we have J(θ, θr) > 0 while g(θ, θr) < 0 for any θ > 0, which is

inconsistent. And for θ → θ+
min, J(θ, θr)→ −∞, for any θr; therefore any optimal search

threshold should be larger. Next, consider the derivative of J(θr,t hetar) with respect to
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θr, ∂J/∂θr. It verifies the following

(
exp(−ρc)− 1 + α

∫ θr

θ
φ(θ)dθ

)
∂J

∂θr
+ αφ(θr)Π(θr) = αφ(θr)g(θr, θr) + α

∫ θr

θ

∂g

∂θr
φ(θ)dθ

(77)

⇔
(

exp(−ρc)− 1 + α
∫ θr

θ
φ(θ)dθ

)
∂J

∂θr
= (78)

αφ(θr)

(
exp(−ρc)− 1 + α

∫ θr
θ φ(θ)dθ

)
g(θr, θr)− α

∫ θr
θ g(θ, θr)φ(θ)dθ

exp(−ρc)− 1 + α
∫ θr
θ φ(θ)dθ

+ α
∫ θr

θ

∂g

∂θr
φ(θ)dθ

(79)

⇔
(

exp(−ρc)− 1 + α
∫ θr

θ
φ(θ)dθ

)
∂J

∂θr
= (80)

−αφ(θr)g(θr, θr)
exp(−ρc)− 1 + α

∫ θr
θ φ(θ)dθ

(
− exp(−ρc) + 1− α

∫ θr

θ
φ(θ)dθ + α

∫ θr

θ
r(θ, θr)φ(θ)dθ

)
+ α

∫ θr

θ

∂g

∂θr
φ(θ)dθ

(81)

⇔
(

exp(−ρc)− 1 + α
∫ θr

θ
φ(θ)dθ

)
∂J

∂θr
= (82)

−αφ(θr)g(θr, θr)
exp(−ρc)− 1 + α

∫ θr
θ φ(θ)dθ

(F (θr)− exp(−ρc))︸ ︷︷ ︸
>0 iff θr≤θ∗

+α
∫ θr

θ

∂g

∂θr
φ(θ)dθ︸ ︷︷ ︸

>0

(83)

Thus, ∂J/∂θr |θr=θ∗> 0. It follows that θ∗ < θ∗∗. The expected investment in search

of speculator i for a given stopping rule θ∗i is E(ni)c = c
Λ(θ∗i ;theta,α) (see eq.(3). Now,

Λ(θ∗i ; θ, α) increases with θ∗i . It then follows from the fact that θ∗ < θ∗∗ that the expected

investment in search is larger when θ∗i = θ∗ than when θ∗i = θ∗∗, as claimed in the second

part of the proposition.
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