The geometry of information coding in correlated neural populations
Résumé
Neurons in the brain represent information in their collective activity. The fidelity of this neural population code depends on whether and how variability in the response of one neuron is shared with other neurons. Two decades of studies have investigated the influence of these noise correlations on the properties of neural coding. We provide an overview of the theoretical developments on the topic. Using simple, qualitative and general arguments, we discuss, categorize, and relate the various published results. We emphasize the relevance of the fine structure of noise correlation, and we present a new approach to the issue. Throughout we emphasize a geometrical picture of how noise correlations impact the neural code.
Domaines
Neurosciences [q-bio.NC]
Fichier principal
GeometryOfInformationCoding-20201204-AnnotatedForBiorxiv.pdf (697.92 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|