The geometry of information coding in correlated neural populations - Archive ouverte HAL
Article Dans Une Revue Annual Review of Neuroscience Année : 2020

The geometry of information coding in correlated neural populations

Résumé

Neurons in the brain represent information in their collective activity. The fidelity of this neural population code depends on whether and how variability in the response of one neuron is shared with other neurons. Two decades of studies have investigated the influence of these noise correlations on the properties of neural coding. We provide an overview of the theoretical developments on the topic. Using simple, qualitative and general arguments, we discuss, categorize, and relate the various published results. We emphasize the relevance of the fine structure of noise correlation, and we present a new approach to the issue. Throughout we emphasize a geometrical picture of how noise correlations impact the neural code.
Fichier principal
Vignette du fichier
GeometryOfInformationCoding-20201204-AnnotatedForBiorxiv.pdf (697.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03049357 , version 1 (09-12-2020)

Identifiants

Citer

Rava Azeredo da Silveira, Fred Rieke. The geometry of information coding in correlated neural populations. Annual Review of Neuroscience, In press, ⟨10.1146/annurev-neuro-120320-082744⟩. ⟨hal-03049357⟩
232 Consultations
184 Téléchargements

Altmetric

Partager

More