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Abstract

Neurons in the brain represent information in their collective activity.

The fidelity of this neural population code depends on whether and

how variability in the response of one neuron is shared with other neu-

rons. Two decades of studies have investigated the influence of these

noise correlations on the properties of neural coding. We provide an

overview of the theoretical developments on the topic. Using simple,

qualitative and general arguments, we discuss, categorize, and relate

the various published results. We emphasize the relevance of the fine

structure of noise correlation, and we present a new approach to the

issue. Throughout we emphasize a geometrical picture of how noise

correlations impact the neural code.
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1. Introduction

The quantitative study of information processing by neurons was born from investigations that correlated neural

responses with parameters that characterize an ‘external event’ such as a physical stimulus or a motor action (Hubel

1995). Responses of single neurons to simple stimuli have revealed many key properties of coding. These are often

summarized in the form of receptive fields or, equivalently, tuning curves. Except in rare cases, however, physical

stimuli and motor actions are coded, or represented, in the activity of an entire population of neurons. How, then,

are rich signals represented in the collective activity of many neurons?

The issue of noise is central. Responses of a single, ideal, noiseless neuron can encode an infinite amount of

information. By contrast, a real, noisy neuron disposes of a finite bandwidth. In a population of neurons, the

noise in each individual neuron can be reduced by averaging. This is the simplest view on population coding: the

population enhances the representative signal by averaging out the noise. But there are two features of population

coding that make it a richer problem. First, physiological properties differ among cells, so that different neurons

represent different aspects of the stimulus. Second, noise in the responses of individual neurons is correlated and,

hence, its impact on information coding has to be considered collectively, not one cell at the time. These two aspects

of the problem are intimately related: neurons acquire diverse properties because of the specificity of the connections

they make to other neurons, and this also shapes the correlation in the noise. For example, divergence of common

inputs may permit parallel channels to each encode a different aspect of the inputs but may also result in strong

noise correlations between the channels. More generally, the architecture of neural circuits shapes the structures of

both signal and noise.

A great deal of research in quantitative neuroscience attempts to relate the geometry or statistics of neural

responses to sensory stimuli or task parameters. This problem is difficult because it is high-dimensional, as both

signal and noise are specified by a number of possible patterns that grows exponentially with the number of neurons.

Statistical physics exemplifies a possible way to tame this complexity: phenomena such as phase transitions and

superconductivity were explained by identifying the collective variables most relevant to the dynamics of measured

quantities. Once these relevant variables—specific combinations of the microscopic variables—were identified, phe-

nomena of interest could be explained simply in terms of energy stored in the collective variables or of fluctuations

thereof. The understanding of neural coding would similarly benefit from the identification of analogous collective

variables. Indeed, a great deal of effort is expended today to develop methods that can extract ‘low-dimensional’ or

‘latent’ variables from recordings of neural populations. An important consideration, here, is the need to consider

the structure of the average population activity (e.g., in response to a set of stimuli) as well as the statistics of the

variability about this average, and how the two relate.

In the past two decades, progress on understanding how coding depends on the geometry of signal and noise

has been promoted by a simplifying choice, namely, a focus on pairwise correlations. These, unlike higher-order

statistical moments, can be measured within the duration of typical neural recordings. Many neural systems exhibit

non-negligible pairwise correlations (Hatsopoulos et al. 1998, Mastronarde 1989, Ozden et al. 2008, Perkel et al. 1967,

Sasaki et al. 1989, Zohary et al. 1994, Shlens et al. 2008, Usrey & Reid 1999, Vaadia et al. 1995, Bair et al. 2001, Fiser

et al. 2004, Kohn & Smith 2005, Smith & Kohn 2008, Lee et al. 1998, Ecker et al. 2010, Graf et al. 2011, Goris et al.

2014, Lin et al. 2015). Early on, also, pairwise noise correlations were hailed as relevant to coding and behavior: the

limits they imposed on noise reduction by averaging across neurons was hypothesized to account for the surprisingly

similar detection thresholds of small populations of neurons and entire animals (Zohary et al. 1994, Bair et al. 2001).
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These experimental findings and some other early investigations (Johnson 1980, Vogels 1990, Oram et al. 1998)

motivated a series of studies that set heuristic arguments on firm bases and expanded on them, using detailed models

of population coding (Abbott & Dayan 1999, Sompolinsky et al. 2001, Wilke & Eurich 2002, Romo et al. 2003,

Golledge et al. 2003, Averbeck & Lee 2003, Shamir & Sompolinsky 2004, 2006, Averbeck & Lee 2006, Averbeck

et al. 2006, Josic et al. 2009) and general information theoretic arguments (Panzeri et al. 1999, Pola et al. 2003). In

addition to elucidating how noise correlation can limit coding, some of the early work (Abbott & Dayan 1999, Wilke

& Eurich 2002) raised the possibility that noise correlation need not always harm coding. More recent investigations

(Ecker et al. 2011, Hu et al. 2014, Azeredo da Silveira & Berry II 2014, Moreno-Bote et al. 2014, Franke et al.

2016, Zylberberg et al. 2016) expanded the panorama of possible scenarios by showing that noise correlation can be

harmless or appreciably beneficial to the neural code. The key here was the consideration of the fine structure of

correlation, beyond its magnitude. Indeed, analyses of retinal (Franke et al. 2016, Zylberberg et al. 2016) and cortical

recordings (Averbeck & Lee 2004, 2006, Montani et al. 2007, Graf et al. 2011, Lin et al. 2015, Montijn et al. 2016)

have illustrated the beneficial impact of specific structures of noise correlations on coding.

Here, we review theoretical developments on neural population coding in the presence of correlated noise. We

provide an overview of the topic that combines heuristic arguments, the study of simple models, and general mathe-

matical statements. To ensure a formal unity, we focus primarily upon the mutual (Shannon) information as a means

to quantify the neural code, and we comment on its relations with other, related quantities. Section 2 introduces

the problem of neural population coding. Section 3 reviews early, heuristic arguments that pointed to a potentially

detrimental role of noise correlation in coding. Section 4 presents a general, qualitative argument that encompasses

more recent models, and delineates the conditions under which noise correlations are detrimental, inconsequential, or

beneficial. Section 5 presents a model-independent point of view of the problem by expressing the mutual information

in a form that delineates the role of different types of correlation. Section 6 examines the coding problem from a

geometrical point of view that complements and further clarifies the results described in earlier sections and in the

recent literature.

2. The problem of neural population coding

Sensory stimuli are coded in the activity of populations of neurons. One of the fundamental problems in neuroscience

is that of elucidating the nature of this code; this problem can be divided into two parts. On the encoding side, we

would like to know what properties of the population activity are relevant to the representation of information, and

how these properties are manipulated by the brain. On the decoding side, we would like to identify the mathematical

operation that retrieves a physical stimulus (or some feature of it) from the output of a population of neurons. We can

then ask also how such a mathematical operation is implemented by neurons. Here, we are concerned exclusively with

the encoding side of the problem. Earlier reviews (see, e.g., (Averbeck et al. 2006)) discuss the impact of correlations

on decoding.

Population coding is a much richer problem than single-cell coding because it is high dimensional. The number of

population states grows exponentially with the number of neurons, allowing for combinatorial codes. This is true even

for noiseless neurons, as cells come in different functional (and genetic) types and even cells of a given type present

physiological variability. The situation is further complicated by the fact that neurons are noisy: a given physical

stimulus can elicit one of a number of population activity patterns. (We are not making any philosophical statement

about noise as a sort of fundamental randomness. Instead, we refer to noise in a procedural way: for example, we say

that the neural response is noisy if it varies from one trial to the next of an identical stimulus. This variability may

result from biochemical stochasticity, but it may also reflect the purely deterministic dynamics of a complex system,

such as interference between coding of the visual stimulus with other, unrelated neural activity elicited by other

stimuli or internal processing.) The mean population response to a sensory stimulus and its variability are given by

the joint statistics of the firing of neurons. Thus, the fundamental problem of neural population encoding amounts

to asking how information about a physical stimulus is represented by this complicated mathematical object. We say

‘information about the physical stimulus’ rather than specifically the stimulus itself because a neural population may

represent properties associated with the stimulus, such as one of its attributes, a hidden event that may have caused

the stimulus, or even a ‘meta-property’ of the stimulus such as the probability with which it occurs in a specific

environment.

Following the bulk of the theoretical literature to date, we make two simplifications to make this general problem

more approachable. First, we consider only pairwise correlations; we do not take into account or discuss the potential

effects of higher-order correlations, which are more difficult to estimate precisely from limited experimental data
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(see Refs. (Cayco-Gajic et al. 2015, Zylberberg & Shea-Brown 2015, Montijn et al. 2016) for examples of recent

studies of neural coding in the presence of higher-order correlations). Second, we assume that the output of each

individual neuron can be represented by a scalar variable. This means, in particular, that we do not consider temporal

representations of information, such as those associated with specific spike patterns. We think of the output of the

neural population as divided in successive time bins, and the activity of each neuron in each time bin as defined by a

single number (such as the spike count). We examine the problem through the lens of mathematical quantities that

provide a characterization of the coding performance independently of the choice of a putative decoder. Whenever

possible, we choose to explain theoretical results in terms of the mutual (Shannon) information (Cover 1999). It

quantifies information on a well-founded axiomatic basis, but has the disadvantage that it is often difficult to calculate

analytically. Besides its theoretical foundation, our motivation in aligning various results in the framework of a single

mathematical ‘figure of merit’ of the neural code is to provide as much unity as possible to the discussion.

3. Early views: homogeneous neural population with uniform noise correlations

Initial investigations suggested that noise correlation was detrimental to neural coding. This conclusion was based on

several (simplifying) hypotheses: noise correlations were assumed to be positive, as suggested by neural recordings,

and uniform in a population of neurons with similar tuning properties. Noise correlation was thus viewed as a ‘bug’

in neural processing, and possibly an unavoidable one due to the tight interconnections of neurons.

When we say “noise correlation harms or benefits coding,” we tacitly assume a comparison between a correlated

neural population and another neural population in all matters identical but in which noise correlations have been

removed. This independent population may not be realizable in a real circuit due to interconnectedness of neurons,

but it provides a natural benchmark. Since we disregard higher-order correlations, the comparison is between a

correlated neural population and a neural population in which neurons have identical mean responses and single-

cell variability around their mean responses, but in which pairwise correlations are vanishing, i.e., a population of

independent neurons with matched single-cell response statistics. In practice, when analyzing data, there are several

ways to implement this comparison. A model-independent approach is to create an artificial data set by shuffling

recordings of individual neurons among different experimental trials, in the population recording, so as to retain

single-cell statistics while eliminating the same-trial correlations. If it is possible to fit a model to the population

activity statistics, it is also possible to compare this model to a parallel model in which the average single-cell activity

and noise variance are left unchanged while correlations of second and higher order are set to zero.

It is easy to see why positive noise correlation can be detrimental to coding from the following simple model

(Zohary et al. 1994, Bair et al. 2001). Imagine that you want to discriminate two stimuli, A and B, from the output

of a population of N neurons. For the sake of simplicity, we assume binary neurons, i.e., the response of neuron i, ri,

can take the value 0 or 1. If all the neurons in the population are identical in their response properties, the state of

the population is entirely characterized by the number of active neurons,

k =

N∑
i=1

ri. 1.

On average over trials, 〈k〉s = Np (s), where the brackets, 〈·〉s, denote an average over the distribution of population

activity in the presence of stimulus, s, and p (s) is the probability that a neuron is activated by the stimulus s = A

or B. From trial to trial, k fluctuates about this average quantity. The population output will discriminate the two

stimuli as long as the difference in the mean outputs, N |p (A)− p (B)|, is much larger than the typical magnitude of

these fluctuations,

√〈
(k − 〈k〉)2

〉
s

=

√√√√ N∑
i,j=1

〈[ri − p (s)] [rj − p (s)]〉s

=
√
N [1 + (N − 1) c (s)] p (s) [1− p (s)], 2.

where c (s) is the pairwise correlation of two neurons in the presence of stimulus s, defined as

c (s) =
〈[ri − p (s)] [rj − p (s)]〉s√〈
[ri − p (s)]2

〉
s

〈
[rj − p (s)]2

〉
s

=
〈[ri − p (s)] [rj − p (s)]〉s

p (s) [1− p (s)]
. 3.
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Figure 1

Dependence of the signal-to-noise ratio on the number of neurons (N) and the correlation strength (c). A.
Probability densities of the activity for several combinations of N and c, in a homogenous population of neurons
that respond somewhat more strongly to stimulus A (darker shaded regions) than to stimulus B. For the purpose of
illustration, neural responses are taken to be Gaussian. The overlap between the two distributions decreases
steadily with N in the case of independent neurons (c = 0, black), but minimally in the case with c = 0.2. B.
Dependence of the signal-to-noise ratio on N . Closed circles indicate parameter values as in panel A.

Assuming that the correlation does not depend much on the stimulus, c (A) ≈ c (B) ≈ c, we can define a ‘signal-to-

noise ratio’ (SNR) that characterizes the faithfulness of the code in discriminating the stimuli A and B, as

SNR =
N [p (A)− p (B)]2

[1 + (N − 1) c] p (1− p) , 4.

where p lies somewhere between p (A) and p (B). This quantity is also the square of the ‘sensitivity index’ used in

statistics and generally denoted by d′.

The important point is that the SNR differs qualitatively for c = 0 and c > 0 (Fig. 1A). In the case of

independent neurons (c = 0), SNR grows linearly and indefinitely with N . Each neuron added to the population

carries an incremental piece of information so that, roughly speaking, the coding performance grows in proportion to

the size of the population. This is to be contrasted with the case of positively correlated neurons (c > 0): above a

crossover size, N∗ ≈ 1/c, positive correlation limits the coding performance and the SNR saturates to a finite value at

larger population sizes (Fig. 1B). Each successive neuron added to a growing population carries a decreasing amount

of information, since its variability is shared in part with that of all the other neurons in the population. In large

populations, the activity of an added neuron is ‘dictated’ by that of the other neurons and, hence, it does not provide

any incremental information.

Because of the form of the scaling with population size in Eq. (4), the effect of noise correlation can be strong even

in relatively small populations with modest values of correlation. For example, in the presence of 10% correlation

(c = 0.1, a typical value for cortical and retinal neurons), noise correlation has an appreciable effect already in a

population of a few dozen neurons. For N = 100, and assuming p (A) − p (B) ≈ p ≈ 0.5, the signal-to-noise ratio
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amounts to 9, as opposed to 100 for an independent population of neurons. For N = 1000, the signal-to-noise ratio

grows to 10, as opposed to 1000 for an independent population of neurons. More generally, while the signal-to-noise

ratio increases by one unit for every independent neuron added, in a correlated population it increases by an amount

(1− c) / (1 +Nc)2 when one neuron is added to a population with N neurons. With typical values of c ≈ 0.1, this

quantity drops rapidly to zero in populations with more than 100 neurons.

There are at least two other ways of intuiting this result. The signal-to-noise ratio acquires a factor of N in its

denominator because each neuron shares a fraction of its variability with all the other neurons in the population. As

a result, any ‘error’ committed by a neuron will be enhanced by a factor of N , since neurons share their variability.

Consequently, the variability in the population response will be greatly enhanced. In other words, positive correlation

broadens the distribution of population responses. Yet another way to think about this result is that positive

correlation induces neurons to respond similarly: it is as if positive correlation yields a reduced ‘effective size’ of the

population, and, hence, suppresses the coding capacity. In the extreme case of 100% correlation (c = 1), all neurons

in the population behave identically, and the population as a whole cannot code for any more information than a

single neuron does.

It is instructive to see how the conclusions obtained from the simple model are reflected by a fundamental

information theoretic quantity, the mutual (Shannon) information. There are several equivalent ways to express the

mutual information; for our purposes we adopt the form

I =

〈∑
r

P (r | s) log

(
P (r | s)
〈P (r | s)〉S

)〉
S

, 5.

where r ≡ (r1, . . . , rN ) is the vector of population response (or population activity), s ∈ S denotes a stimulus (and

S is the set of possible stimuli), and 〈·〉S indicates an average over all stimuli. In our simple model, there are two

stimuli, s = A or B, and r labels the 2N possible states of the population:

r = (n1, . . . , nN ) , 6.

where ni = 0 if neuron i is silent and ni = 1 if neuron i is firing. In this case, assuming that the two stimuli are

equiprobable,

〈P (r | s)〉S =
1

2
[P (r | A) + P (r | B)] , 7.

we can rewrite Eq. (5) as

I = H − 1

2

∑
r

[
P (r | A) log

(
1 +

P (r | B)

P (r | A)

)
+ P (r | B) log

(
1 +

P (r | A)

P (r | B)

)]
, 8.

where H = log (2) = 1 bit of information associated with the stimulus.

The second term on the right-hand-side of Eq. (8) is referred to as the noise entropy and is a measure of

the variability in the neural response that is not due to the variability in the stimulus. In other words, this term

quantifies the amount of uninformative variability in the response. The noise entropy is a sum of terms, each of which

corresponds to a particular realization of the population activity. From Eq. (8), it appears immediately that a given

term vanishes if either of the conditional response probabilities, P (r | A) or P (r | B), vanishes; indeed, if a given

stimulus prevents a particular activity pattern, the latter is informative—it ‘codes’ for the other stimulus. Thus, the

noise entropy grows as the overlap between the two conditional response probabilities increases, and, correspondingly,

the mutual information is suppressed. If the overlap of the conditional distributions does not decrease as N increases,

then the mutual information, I, saturates and never reaches the stimulus entropy, H. In this case, it is impossible

to recover the full information about the stimulus from the neural population response even in an infinitely large

population, in agreement with the picture from consideration of the signal-to-noise ratio.

4. Broader views: coding in heterogeneous neural populations with structured correlated noise

Because neurons all come with identical properties in our simple model, there is a single informative quantity: the

total spike count, k (Eq. (1)). More generally, information is represented in a higher-dimensional variable. Multiple

studies (Abbott & Dayan 1999, Sompolinsky et al. 2001, Wilke & Eurich 2002, Romo et al. 2003, Golledge et al. 2003,

Averbeck & Lee 2003, Shamir & Sompolinsky 2004, 2006, Averbeck & Lee 2006, Averbeck et al. 2006, Josic et al.

2009, Ecker et al. 2011, Hu et al. 2014, Azeredo da Silveira & Berry II 2014, Moreno-Bote et al. 2014, Franke et al.
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2016, Zylberberg et al. 2016) have explored how noise correlation can affect the neural code in this case, by exploiting

higher-dimensional versions of the structure illustrated in Fig. 1. The main—and important—departure from our

simple model was the generalization to heterogeneous neural populations: the average single-neuron response to a

given stimulus was assumed to vary from neuron to neuron, and likewise pairwise correlations were different from

pair to pair. Most studies started with a set of ‘tuning curves’ (average response as a function of stimulus parameter)

assigned to the neurons in the population. Noise, including pairwise correlations, was either estimated from neural

recordings or posited on theoretical grounds. The fidelity of the population code was then evaluated in terms of

a chosen figure of merit, such as the mutual information or a decoding error variance. The results obtained thus

depended on the specifics of the assumptions involved in setting the forms of the tuning curves and of the noise

model; to explore a range of behaviors, the latter had to be varied. For example, many early investigations used

model neurons responding to a continuous stimulus with broad tuning curves, and assumed noise models in which the

pairwise correlation depended only upon the tuning preferences of the two neurons in the pair. Later studies included

more sophisticated forms of heterogeneity and dependences, such as the dependence of the pairwise correlation not

only upon the tuning preferences but also upon the stimulus itself.

To illustrate how coding depends on the manner in which neurons are correlated, we take a more general but more

qualitative approach. As stimulus parameters are varied, the responses of the N neurons in the population trace out

a hypersurface in the N -dimensional space of the population responses (Fig. 2A). If the tuning curves are sufficiently

smooth, this hypersurface can be approximated locally by a hyperplane. (There exist important examples in which

this approximation is not valid (Sreenivasan & Fiete 2011, Blanco Malerba et al. 2020).) Single-trial population

responses depart from this hyperplane due to noise; the orientation of the hyperplane and the geometry of the noise

define M ‘informative dimensions’ or ‘informative modes’,

mi =

N∑
j=1

aijrj , 9.

where aij are numerical prefactors and i = 1, . . . ,M . One can think of these variables as chosen to maximize the

mutual information with the stimulus or to correspond to optimal decoding dimensions. If the noise is isotropic

in the N -dimensional space of population responses, then the informative dimensions coincide with the hyperplane

defined by the tuning curves; in general, however, the ‘informative hyperplane’ (defined by the coefficients aij) and

the ‘signal hyperplane’ are distinct (Fig. 2C).

In the simplest and most commonly studied case of a one-dimensional stimulus, the informative mode,

m =

N∑
j=1

ajrj , 10.

lies along the vector with elements aj . The quantity in Eq. (10) plays a role analogous to the spike count (Eq.

(1)) in our simple model. By analogy with the simple model, the ‘strength of the signal’ carried by the informative

mode is obtained by averaging over the noise, and grows linearly with the size of the population: 〈m〉 ∼ O (N). How

much information a mode represents depends also upon the uncertainty of its value. Early studies considered cases

in which this uncertainty, as measured by its variance, grew either linearly or quadratically with N (Abbott & Dayan

1999, Sompolinsky et al. 2001, Wilke & Eurich 2002, Romo et al. 2003). If neurons are independent, the variance

of the informative modes grows linearly with the size of the population, so that each mode can represent reliably

up to about
√
N different states of the stimuli. In this case, the mutual information grows logarithmically in N . If,

however, positive correlation corrupts an informative mode, its typical amplitude grows linearly with the size of the

population and its variance grows quadratically; in this case, the informative mode can represent reliably only O (1)

different states of the stimulus—i.e., the mutual information saturates to a finite value smaller than the stimulus

entropy. More recent studies (Ecker et al. 2011, Hu et al. 2014, Azeredo da Silveira & Berry II 2014, Franke et al.

2016, Zylberberg et al. 2016) (but see also Refs. (Abbott & Dayan 1999, Wilke & Eurich 2002)) introduced examples

in which noise correlation may in fact suppress the variance of informative modes relative to the independent case,

thereby enhancing the resolution of the code.

We can discuss these different cases by exploiting Eq. (10), which we can rewrite as

m =

N∑
i=1

ai 〈ri〉+

N∑
i=1

aiηi

≡ 〈m〉+ µ, 11.

www.annualreviews.org • 7



where 〈·〉 denotes an average over the noise and the ηjs are N correlated random variables with vanishing mean. The

second term, µ, represents the uncertainty on the magnitude of the informative mode and is the projection of the

population noise along the informative direction defined by the vector with elements aj (Fig. 2). The informative

mode can encode about as many different states of the stimulus as the ratio between the first term, 〈m〉, and the

standard deviation of the second term, µ, in Eq. (11). Its variance is calculated as

〈
µ2〉 =

N∑
i=1

a2i
〈
η2i
〉

+

N∑
i=1

ai
∑
i6=j

aj 〈ηiηj〉

=

N∑
i=1

ai
(
ai
〈
η2i
〉

+Qi

)
, 12.

where

Qi =
∑
i6=j

aj 〈ηiηj〉 . 13.

The first term in Eq. (12) represents the contribution of independent neuron variance, and the second term represents

the contribution of correlated variability among neurons. Generically, Qi can behave as a function of the population

size in one of four ways, listed as follows.

(i) Qi = 0.

(ii) Qi ≈ ±ai
〈
η2
〉
ñc.

(iii) Qi ≈ ai
〈
η2
〉
Ñc.

(iv) Qi ≈ −ai
〈
η2
〉
Ñc.

Here,
〈
η2
〉

corresponds to the typical scale of the single-cell variance and c ∼ O (1) > 0 corresponds to the typical

scale of the (positive) pairwise noise correlation. The quantity Qi also depends on an ‘effective population size’ (ñ or

Ñ) that corresponds to the magnitude of the correlated noise mode relevant to coding. Generically, ñ ∼ O (1) > 0

and Ñ ∼ O (N) > 0 are constants; in particular regimes, Ñ can scale more weakly with N (see below). Without loss

of generality, we exhibit a prefactor ai in these expressions, for the sake of convenience given the form of Eq. (12).

This form is natural, also, in the case of most models considered in the literature, in which the total spike count

in the population is uninformative. For example, for neurons with broad tuning curves that tile the stimulus space

densely, so that the total spike count in the population is roughly independent of the stimulus, the elements of the

informative vector sum to zero, i.e.,
∑N

i=1 ai = 0. In a population with uniform correlations (Abbott & Dayan 1999,

Wilke & Eurich 2002), i.e., 〈ηiηj〉 =
〈
η2
〉
c for all i, j, the quantity Qi amounts to −ai

〈
η2
〉
c.

We can now organize the various results which appear in the literature among these four categories:

1. Independence (case i). If neurons are independent,
〈
µ2
〉

grows like N , so that the informative mode can represent

about 〈m〉 /
√
〈µ2〉 ∼

√
N different states of the stimulus.

2. Strongly detrimental noise correlation (case iii). Early models (Abbott & Dayan 1999, Sompolinsky et al. 2001,

Wilke & Eurich 2002), assume smooth, broad tuning curves, so that a given stimulus activates most neurons in the

population. As a result, the informative vector contains a macroscopic fraction of non-vanishing elements, ai, which

vary slowly with i. If the covariance of the noise, 〈ηiηj〉, also varies slowly with j over the population, it can ‘interfere

constructively’ with aj , meaning that the noise is large in directions in which the informative mode is also large. In

this case, Qi grows like N and
〈
µ2
〉

grows like N2, and the informative mode can represent only O (1) different states

of the stimulus. In other words, the performance of the code (as measured, e.g., by the mutual information) saturates

for large neural populations.

3. Weakly detrimental or weakly beneficial noise correlation (case ii). Some early studies (Abbott & Dayan 1999,

Wilke & Eurich 2002) noted that noise correlations that are uniform over the population can lead to an improvement

in the coding performance. Indeed, if 〈ηiηj〉 =
〈
η2
〉
c is independent of i and j, then Qi = −ai

〈
η2
〉
c, and

〈
µ2〉 =

N∑
i=1

a2i
〈
η2
〉

(1− c) ∼ (1− c)O (N) . 14.

As a result, the informative mode can represent a number of different states of the stimulus that depends upon the

population size and the strength of the noise correlation as
√
N/ (1− c). This moderate improvement of the coding

performance was obtained in studies that allowed allowed for neuron-to-neuron variability in tuning curve properties

(Shamir & Sompolinsky 2006, Ecker et al. 2011). This variability implied rapid fluctuations of the elements of the
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informative vector, ai, as a function of the neuron index, i. If, by contrast, the noise covariance, 〈ηiηj〉, varies smoothly

over the population, then the ‘destructive interference’ between these two terms yields, again, a linear scaling of Qi

with N , similar to the case of perfectly uniform correlation. More generally, whether the noise correlation is strongly

detrimental or weakly detrimental/beneficial depends upon whether the interference between informative vector and

noise covariance is constructive or destructive, respectively, over the population.

4. Strongly beneficial noise correlation (case iv). Recent studies noted that the ‘destructive interference’ between the

elements of the informative vector and the noise covariance can lead to an appreciable suppression of the uncertainty

(Azeredo da Silveira & Berry II 2014, Franke et al. 2016, Zylberberg et al. 2016). This occurs if aj and 〈ηiηj〉 both

vary slowly as a function of j, over the population, but are, roughly speaking, ‘out of phase’: positive noise correlations

are suppressed for neurons which contribute to a greater degree to the ‘strength of the signal’, and vice versa. As a

consequence, the quantity Qi becomes negative and scales with N and the variance of the noise is calculated as〈
µ2〉 ≈ αN 〈η2〉 (1− Ñc

)
, 15.

where α is a positive number of O (1) and c is the typical scale of the (positive) pairwise noise correlation as before.

Generically, Ñ scales linearly with N , so that uncertainty is strongly suppressed by noise correlation, through the

term 1 − Ñc. The informative mode can then represent a number of different states of the stimulus that depends

upon the population size and the strength of the noise correlation as
√
N/
(

1− Ñc
)

. The important point, here,

is that the denominator is strongly suppressed as a function of population size. This results, in particular, in an

appreciable enhancement of the coding performance when Ñ ∼ O (1/c).

The right-hand-side of Eq. (15) remains non-negative since the covariance of the noise is positive semi-definite.

In this formulation, we assume that the scale of the correlation, characterized by c, is fixed; as Ñ increases, the

covariance matrix becomes increasingly constrained by this condition, and, depending on its structure, one or several

small eigenvalues may emerge. As these tend to zero, the informative vector rotates with respect to the eigenvectors

of the noise covariance matrix and, as a consequence, the scaling of Ñ becomes weaker. This limiting regime in the

vicinity of a singular noise covariance matrix interpolates between the scalings in cases (ii) and (iv), thereby allowing

the term 1− Ñc in Eq. (15) to remain non-negative. We return to the discussion of the behavior of the informative

direction as a function of the structure of the noise in Sec. 6, where we provide further illustration in a concrete

model.

The dependence of this boost upon the population size is a signature of the collective effect at play here: in

a correlated system, the behavior of a neuron is affected by all N − 1 other neurons. For c ∼ 0.1, as observed

experimentally, the effect of correlation upon coding is appreciable already in populations as small as tens or hundreds

of neurons (Azeredo da Silveira & Berry II 2014). A specific incarnation of this phenomenon occurs in a model of

broadly tuned neurons in which the dependence of the correlation between a pair of neurons upon the difference in

their tuning preference is allowed to be non-monotonic (Franke et al. 2016, Zylberberg et al. 2016).

The list just outlined catalogs the various ways in which noise correlation can affect the coding of stimuli along

an informative dimension by shaping the variability in the population response. Our discussion of the ‘interference’

between elements of the informative vector and the noise covariances can be seen as a generalization of the ‘sign

rule’ (Hu et al. 2014), according to which positive correlation is favorable in a pair of neurons with negative signal

correlation, and vice versa.

There is one case, however, which was not covered: this is when there is no informative dimension in the sense we

discussed above. To be specific, consider the case in which the average magnitude of the activity in the ‘informative’

dimension, 〈m〉, is independent of the stimulus. Information about the stimulus can be encoded in the noise itself:

if correlation depends upon the stimulus, then different patterns of population activity can discriminate stimuli. We

return to this case in the next section, in a more systematic treatment of the mutual information.

Finally, above we have considered only pairwise correlations. In the presence of higher-order correlations, addi-

tional kinds of scalings occur. If real neural systems are dominated by the strong co-activation of groups of neurons

corresponding to higher-order correlation, the analyses developed so far may have a limited relevance to our under-

standing of population coding.

5. A general approach to account for the impact of noise correlations on mutual information

Many of the studies of neural population coding to date have relied upon specific models of neural populations, and

have focused on one central question: how does the coding performance scale with the number of neurons, in particular
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in the limit of large populations? Moreover, most of these studies quantified coding through the Fisher information.

Other information-theoretic quantities, such as the mutual (Shannon) information, are more fundamental (Cover

1999, Brunel & Nadal 1998, Kang & Sompolinsky 2001, Wei & Stocker 2016) and avoid difficulties associated with

the Fisher information (Bethge et al. 2002). The Fisher information is local in stimulus space, whereas the mutual

information quantifies the accuracy of stimulus representation over the entire stimulus space. The use of the Fisher

information also relies upon some restrictive assumptions, and yields only a lower bound on the coding resolution,

which may or may not be tight.

Coding in neural populations can be examined from a general perspective by expressing the mutual information

in a form that isolates the impact of different types of correlation (Panzeri et al. 1999, Pola et al. 2003). We discuss

the implications of this decomposition here; in App. B, we provide a derivation of the decomposition, which follows

and somewhat simplifies that in Refs. (Panzeri et al. 1999, Pola et al. 2003). The central result is a reformulation of

the mutual information as a sum of three terms:

I = Iindependent + I
(1)
correlated + I

(2)
correlated. 16.

Each of the terms can be expressed as a function of the joint probability, P (r, s), between stimulus, s, and population

response, r, and transformations of this joint probability, such as P0 (r | s), defined in Eq. (31) which denotes the

conditional probability of the response in a population of independent neurons with matched mean and variance. In

App. B, we show that the three terms in Eq. (16) can be written as

Iindependent ≡

〈∑
r

P0 (r | s) log

(
P0 (r | s)
〈P0 (r | s)〉S

)〉
S

, 17.

I
(1)
correlated =

〈∑
r

P (r | s) log

(
P (r | s) /P0 (r | s)

〈P (r | s)〉S / 〈P0 (r | s)〉S

)〉
S

18.

and

I
(2)
correlated =

〈∑
r

[P (r | s)− P0 (r | s)] log

(∏N
i=1 P (ri)

〈P0 (r | s)〉S

)〉
S

. 19.

The benefit of this reformulation of the mutual information is that each of these three terms come with a

transparent interpretation. The term Iindependent represents the information carried by conditionally independent

neurons; indeed, if there is no noise correlation, P (r | s) = P0 (r | s), and both I
(1)
correlated and I

(2)
correlated vanish.

Thus, Iindependent accounts for the amount of information carried by the population which is not affected by noise

correlations. In App. B, we show that Iindependent can be broken down further to isolate the impact of signal

correlations.

The term I
(1)
correlated is the formal analog to the term Iindependent, but where the information is carried by noise

correlations rather than by the structure of mean response. Thus, it accounts for stimulus coding by the noise corre-

lations themselves: the same way differential firing rates characterize different stimuli, non-uniform noise correlation

can also specify the stimulus. Figure 3B illustrates an example of the effects captured by this term in the simple case

of a two-neuron population that encodes a binary stimulus, s = A or B. Here, the mean responses to stimuli A and B

are identical, yet the identity of the stimulus can be inferred from the two-neuron response due to the differences in

noise correlation. Generalizations of this mechanism have been studied in various models of neural population coding

(Shamir & Sompolinsky 2004, Josic et al. 2009, Zylberberg 2018), and stimulus-dependence of correlations has been

proposed as supporting visual coding in direction-selective middle-temporal neurons in monkeys (Ponce-Alvarez et al.

2013). As we show in App. B, both terms Iindependent and I
(1)
correlated are non-negative; they capture occurrences in

which variations of mean response or noise correlations as a function of stimulus are informative.

Finally, I
(2)
correlated represents the increment or decrement of information due to the interplay between signal

correlation and noise correlation. From Eq. (19), it is apparent that I
(2)
correlated vanishes if either noise correlation is

absent (P (r | s) = P0 (r | s)) or signal correlation is absent (〈P0 (r | s)〉S =
∏N

i=1 P (ri)). Furthermore, and unlike the

other two components of the mutual information, this component can be positive or negative. For a given stimulus,

s, each population response, r, yields a positive contribution if [P (r | s)− P0 (r | s)]×
[∏N

i=1 P (ri)− 〈P0 (r | s)〉S
]

is

positive, and a negative contribution otherwise. In other words, the contribution to the information of a population

response is positive if noise correlation favors this population response while signal correlation disfavors it, and vice

versa, and it is negative if both noise and signal correlations either favor or disfavor the population response. (When

we say ‘favor’ and ‘disfavor’, as usual we are comparing the case of a population of correlated neurons to the case of
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Figure 2

Representation of information by stimulus-dependent noise. A. Illustration of a situation in which the variance
of the response of a single neuron encodes information about the stimulus identity. For example, the noisy response
denoted by the black circle is more likely to be induced by stimulus B than by stimulus A. B. Illustration of a
similar situation, in which the information is encoded in correlations of the noise in the joint response of two
neurons. In both panels A and B, the mean response is the same for stimulus A and stimulus B, and, hence,
uninformative about their identity.

a population of independent neurons.) The form of I
(2)
correlated in Eq. (19) captures another generalized formulation

of the sign rule we mentioned in the previous section (Hu et al. 2014). It also illustrates in the language of mutual

information, and without reference to any specific model, the kind of ‘constructive versus destructive interference’

discussed in the previous section.

The reader might wonder about the merits of what may seem like a mere mathematical exercise. Many studies

today start from data and end in data, and seek to make sense of data rather than to propose a theoretical framework.

In this context, we find it refreshing to examine the question from a more abstract theoretical point of view, not tied to

a specific model. It adds to our understanding to be able to consider a same neural mechanisms from multiple points

of view. Having said this, we emphasize that the framework just outlined can indeed be put to the task of analyzing

data. It was recently used, for example, to uncover the organization of assemblies of neurons with redundant and

synergistic coding of visual information in monkey cortex (Nigam et al. 2019).

6. Information coding and the geometry of noise correlation

The breakdown of the mutual information discussed in the previous section teases apart the various contributions

from signal and noise correlations, but it provides neither a quantitative nor a geometrical view of how the structures

of signal and noise together impact coding. This section develops such a geometrical view by revisiting the task of

discriminating two stimuli, A and B, discussed in Sec. 3.

To streamline the mathematical treatment, we consider a limiting case in which the mutual information takes a

simple form, namely, the case in which stimulus A is presented with probability φ � 1. In this limit, the mutual

information can be written as

I = φ
∑
r

P (r | A) ln

(
P (r | A)

P (r | B)

)
+O

(
φ2) , 20.

where r is the vector of neural responses, rT = (r1, . . . , rN ). This approximation is valid when φP (r | A) /P (r | B)�
1 i.e., we exclude cases in which there exist responses overwhelmingly more likely to be elicited by stimulus A than

by stimulus B. This condition is satisfied, in particular, in the case of a demanding discrimination task, since in this

case the distributions P (r | A) and P (r | B) overlap considerably. If the noise is Gaussian, the mutual information

can be expressed in terms of the response mean and covariance, as

I = φ ln

(
Det (CA)

Det (CB)

)
+

1

2
φTr

(
CAC

−1
B − I

)
+

1

2
φmTC−1

B m, 21.

where Cs (s = A,B) is the covariance of the noise in response to stimulus s, I is the identity matrix, and m is the

‘signal vector’ which, in this case, is simply the difference between the mean responses to the two stimuli, i.e.,

mi ≡ 〈ri〉A − 〈ri〉B . 22.
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Here i indicates the ith neuron, and 〈·〉s denotes the average over the conditional probability, P (r | s). To obtain

Eq. (21), we have further assumed that the spike counts take large values, so that their discrete nature becomes

unimportant and the sum over population patterns can be replaced by an integral.

Equation (21) can be interpreted particularly transparently in the case in which the variances of the single-neuron

responses do not depend on the stimulus. In this case, the first two terms depend only upon the noise correlation;

they correspond to the term I
(1)
correlated in Eq. (16). The third term in Eq. (21) describes the interplay between signal

and noise correlation, and corresponds to the term I
(2)
correlated in Eq. (21). This term is the formal equivalent to the

so-called ‘linear Fisher information’ used in many earlier studies. It can also be viewed as the signal-to-noise ratio

discussed in Sec. 3, or the square of the sensitivity index, d′.

We can examine the contribution of the interplay of signal and noise correlation by comparing the third term

in Eq. (21) for correlated and independent neurons, again in the case in which the single-neuron variances do not

depend on the stimulus. For independent neurons, the mutual information reduces to

I0 ≡
1

2
φmTC−1

0 m, 23.

where C0 is the diagonal matrix obtained from CB by setting all off-diagonal elements to zero. If neurons are recorded

from individually, one has access only to the moments m and C0, and the mutual information is estimated according

to Eq. (23). By contrast, when neurons in a population are recorded from simultaneously, and the statistics of the

population responses are fitted to a multivariate Gaussian, then the mutual information is given by the richer Eq.

(21).

Since the covariance matrix in Eq. (23) is diagonal, the mutual information for independent neurons can be

rewritten as

I0 =
1

2
φ

N∑
i=1

m2
i

σ2
i

, 24.

where σ2
i is the variance of the activity of neuron i. I0 grows linearly as N increases—a property of the limit of a rare

stimulus considered here. (Beyond a crossover size, the first-order expansion in φ breaks down, and, asymptotically,

the mutual information increases logarithmically in N). By analogy with Eq. (24), a natural way to calculate

I
(2)
correlated, indeed an approach followed by much of the literature (starting with Refs. (Abbott & Dayan 1999,

Sompolinsky et al. 2001, Wilke & Eurich 2002)), is to diagonalize the covariance matrix, to obtain

I
(2)
correlated =

1

2
φ

N∑
i=1

m̃2
i

λi
, 25.

where m̃i are the elements of the vector m in the new basis in which CB is diagonal, and λi is the ith eigenvalue

of the covariance matrix CB. The argument is then that, if the structure of pairwise correlations is such that the

eigenvectors of the covariance matrix (the ‘correlated modes’) are not sparse and involve contributions from a sizable

fraction of the neurons in the population, then the eigenvalues will scale with the population size. In this case, the

sum in Eq. (25) will yield a weaker scaling with N than the sum in Eq. (24). In particular, if a few eigenvalues

remain small as N increases, then these eigenvalues dominate the sum in Eq. (25) and the latter asymptotes to a

constant. In other words, I
(2)
correlated saturates to a finite value in arbitrary large populations of neurons.

This approach is not entirely satisfactory because it is difficult to compare Eq. (24) and Eq. (25) since both the

numerator and the denominator differ. Indeed, the numerator in Eq. (25) depends upon the signal vector as well as

the structure of the noise covariance. Furthermore, some of the eigenvalues in Eq. (25) may take small values, and

one may wonder what dominates the sum: the larger terms associated with small eigenvalues or the more numerous,

smaller terms associated with larger eigenvalues. To resolve these ambiguities, it is possible instead calculate an

‘information ratio’ that quantifies by how much noise correlations suppress or enhance coding as compared to the

case of an independent population of neurons (Azeredo da Silveira & Rieke 2020). This ratio can be expressed in a

compact form, as

RI ≡
I
(2)
correlated

I0
=

Det (χ̃)

Det (χ)
, 26.

where χ is the correlation matrix corresponding to the covariance matrix CB, and χ̃ is the projection of χ on the

(N − 1)-dimensional subspace orthogonal to the modified signal vector, v, with elements vi ≡ mi/σi. The information

ratio depends upon the spectra of the two matrices, χ and χ̃. While χ depends only upon noise correlation, χ̃

incorporates an interaction between the noise correlation the modified signal vector.
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To intuit the behavior of the information ratio defined in Eq. (26), it is instructive to examine information coding

with two correlated neurons. The covariance of the noise reads

CB =

(
σ2
1 σ1σ2c

σ1σ2c σ2
2

)
, 27.

where σ1 and σ2 are the standard deviations in the activities of the two neurons, and c is the correlation of the noise.

In this simple case, the information ratio takes the form

RI =
1− 2c/

(
ζ + ζ−1

)
1− c2 , 28.

where

ζ ≡ m1

σ1

(
m2

σ2

)−1

. 29.

Since the parameter ζ can take any real value, inspection of the form of the information ratio reveals that large

volumes in the space of model parameters yield RI > 1 and, conversely, RI < 1. Specifically, the information ratio

is larger than unity, i.e., noise correlation is beneficial to information coding, when c > 2/
(
ζ + ζ−1

)
. This relation,

again, can be viewed as a generalization of the ‘sign rule’: it dictates how strong correlation ought to be to benefit

coding as a function of the signal vector and the single-neuron variances.

This simple example also helps shed light on the discussion in Sec. 4. There, we invoked an ‘informative

dimension’. Similarly, here, we can ask whether there is an especially informative dimension in the two-dimensional

space of the two-neuron population activity: in which direction should the unit vector, e point in order to maximize

the mutual information I (s;x), where s = A or B and x ≡ eTm = e1m1 + e2m2? This problem is solved easily,

and the unit vector that maximizes I (S;x), call it e∗, can be expressed in terms of the signal vector as well as the

variances and correlation of the pair of neurons. What is more interesting, though, is that the mutual information

I
(
S;x = e∗Tm

)
matches I

(2)
correlated exactly: that is, the one-dimensional variable x recovers the entirety of the useful

information contained in the two-dimensional activity of the neuron pair. The dimension defined by the vector e∗ in

the space of population activity is thus an ‘informative dimension’ in the sense of Sec. 4.

In general, the informative dimension does not align with the signal vector. For example, in the limit of weak

correlation, |c| � 1, and comparable variances, |σ2/σ1 − 1| � 1, the informative dimension is obtained by rotating

the signal vector by an angle c
(
m2

2 −m2
1

)
/m2 − 2 (σ2/σ1 − 1)m1m2/m

2. The fidelity of coding depends upon the

noise along this direction, i.e., the variance of the projection of the noise along e∗. A contrasting picture has been

discussed in the literature in recent years: a number of authors have argued that the fidelity of coding depends, rather,

on the presence of what they call ‘differential correlations’ (Moreno-Bote et al. 2014, Kohn et al. 2016). These are

taken to be present if the covariance matrix of the noise in the population activity contains a component proportional

to mmT —i.e., a component along the signal direction (Fig. 2A). The central conclusion from this line of research is

that differential correlations limit coding performance in that they cause the information represented in the neural

population to saturate asymptotically, as N →∞.

A picture that emerges from the argument summarized in this section and illustrated in Fig. 2 is that, if the

covariance matrix contains small eigenvalues, then the information represented in the neural population (equivalently,

the signal-to-noise ratio) can be large. This holds even if there is appreciable noise along the signal vector, provided

that the eigenvectors corresponding to the low-noise directions are not orthogonal to the signal vector. More generally,

figures of merit of the coding performance of a population of neurons, such as the mutual information or the signal-to-

noise ratio, depend upon the full structure of the noise covariance in relation to the signal vector, and not exclusively

upon the projection of the noise along the dimension defined by the signal vector. Rather, in scenarios such as the

ones discussed above, what matters is the projection of the noise along an informative dimension in general distinct

from that along the signal vector. This is true in the case of finite values of N and in the asymptotic limit with

N →∞. While some of the mathematical statements can simplify in the asymptotic limit, this limit may be far from

natural for neural systems; for example, individual neurons may receive input from a modest number of presynaptic

neurons, and correlations in this collection of presynaptic neurons will shape signaling in the postsynaptic neuron.

7. Future directions

The discussion above aims at unifying various results in the literature using a common metric for neural coding—the

mutual information. We build intuition about the impact of noise correlations on coding by developing a geometrical
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picture of the structure of signal and noise. Our goal is to highlight situations in which noise correlations are beneficial,

detrimental, or inconsequential for the fidelity of the neural population code rather than to consider specific examples

that fall into one category or another. Below, we summarize the assumptions that form the basis of our discussion

and we touch upon some of the open questions that it raises.

Obstacles to understanding coding in populations of neurons arise largely from the high dimensionality of the

problem. Experiments by necessity probe a small subregion of the space of interesting stimuli, and the presence of

response nonlinearities (such as adaptation) imply that insights gleaned from such experiments often do not generalize

to all stimuli. The space of neural responses is similarly high dimensional, and is impossible to probe completely

in the finite duration of an experiment. But even an incomplete understanding of the role of noise correlations

in neural responses is helpful to guide experimental design. For instance, understanding the neural code requires

experiments that not only measure noise correlations but also take into account their relation to the encoded signal.

Response variability may lie in a direction in which it impacts the encoded signal minimally. As an example, consider

a population of orientation-tuned V1 neurons. A change in stimulus orientation will increase activity in some neurons

and decrease activity in others. Noise that produces correlated fluctuations in firing rate that are uniform across the

population will interact minimally with the signal created by changes in orientation.

Our discussion centers around correlations between pairs of neurons, and neglects higher-order correlations. This

is a matter of practicality: pairwise correlations have been measured extensively while we know much less about the

properties of higher-order correlations in real neural circuits. This is changing with the availability of experimental

approaches that allow a large number of cells to be monitored simultaneously. Theoretical frameworks that account

for geometrical relations between signal and higher-order noise correlations are likely to play an important role in

the development of new experimental protocols and methods of data analyses, just as has been the case hitherto for

pairwise correlations.

We chose to focus this review on how structures of signal and noise interact from a statistical point of view, rather

than examining the neural mechanisms that produce such structures. Single-cell properties and the connectivity of

real circuits constrain the structure of both signal and noise, and a finer understanding of the connection between

biological constraints and network properties, on the one hand, and the statistics of population response, on the other,

will help interpret empirical observations (Doiron et al. 2016, Rosenbaum et al. 2017, Huang et al. 2019, Trousdale

et al. 2012, Ocker et al. 2017, Ostojic et al. 2009, Mastrogiuseppe & Ostojic 2018, Schuessler et al. 2020, Tannenbaum

& Burak 2017, Goris et al. 2014, Lin et al. 2015, Pernice et al. 2011, Pernice & da Silveira 2018, de la Rocha et al.

2007, Vidne et al. 2012). A ubiquitous example is the divergence of a common input into parallel circuits, which can

create both signal and noise correlations in those circuits. This is just one of the many ways in which real circuit

mechanisms shape signal and noise. Returning to the picture of collective variables from statistical physics, we can

hope in the future to understand the relation between the mechanisms that shape interactions between neurons, the

impact of those interactions on the structure of signal and noise, and how these combine to yield a representation of

information in neural populations.

Much of the literature in computational neuroscience focuses upon population coding in the ‘thermodynamic

limit’ in which N −→ ∞, that is, the limit of large populations of neurons. This is not, however, the only relevant

limit. Individual neurons receive input from a finite set of other neurons; what matters for the postsynaptic neuron is

the representation of information in its finite presynaptic pool. From a mathematical point of view, also, populations

of moderate sizes may be the relevant ones: for particular structures of pairwise noise correlation, the condition

Nc ≈ 1 defines a ‘strongly correlated regime’ in which stimuli can be encoded faithfully in the population activity

of tens or hundreds of neurons. And higher-order correlation can further enhance the coding performance of ‘small’

populations. Ultimately, we would like to relate the coding accuracy in given populations of neurons to recorded

perceptual acuity and behavioral biases and variability.

Historically, studies of noise correlation in neural activity were motivated precisely by questions of this type. A

set of early papers proposed that noise correlations relieved the necessity to consider populations of more than a few

hundred neurons, since the accuracy of the encoded information saturated (Zohary et al. 1994, Bair et al. 2001). More

recent studies have shown that noise correlations can be beneficial for information coding (Averbeck & Lee 2004,

2006, Montani et al. 2007, Graf et al. 2011, Lin et al. 2015, Franke et al. 2016, Zylberberg et al. 2016, Montijn et al.

2016), and that when correlations are detrimental the encoded information saturates in much larger populations of

hundreds or thousands of neurons (Bartolo et al. 2020, Rumyantsev et al. 2020). One possible mechanism for this

relative insensitivity of coding to noise is the alignment of modes of strongly correlated noise away from the signal

direction (Bartolo et al. 2020, Rumyantsev et al. 2020). At least one recent (and unpublished) study (Stringer et al.

2019), however, suggests that mysteries still lie ahead. The authors show that information encoded in mouse visual
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cortex does not saturate in populations as large as 20000 neurons. Visual acuity inferred from activity in these large

populations outperforms mouse behavior by a factor of 10. This study challenges our view of sensory coding. Mice

may be able to improve, through learning, their use of the encoded information; if this is not the case, however, there

may be fundamental reasons for which the brain relinquishes the use of some of the information it has encoded. A

satisfactory understanding of information coding by neurons may only be possible through the combined study of

encoding and decoding in the brain, and behavior.
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Appendices

A. Noise correlation versus signal correlation

When we consider the noisy response of a neural population to an ensemble of stimuli, there are two possible averaging

procedures: we can calculate averages (moments) over the noise or over the ensemble of stimuli. Loosely speaking,

the former yields noise correlation while the latter yields signal correlation. To be more specific, we consider a

population of N neurons and we denote their outputs by r1, . . . , rN . The statistics of population response is given

by the conditional probability

P (r1, . . . , rN | s) , 30.

where s refers to a stimulus chosen from a set of discrete stimuli or drawn from a density over continuous stimuli.

Noise correlations are non-vanishing if

P (r1, . . . , rN | s) 6=
N∏
i=1

P (ri | s) ≡ P0 (r1, . . . , rN | s) , 31.

where P (ri | s) is obtained from P (r1, . . . , rN | s) by averaging out all rj , with j 6= i. The probability function in

Eq. (30) specifies the noise correlations; these characterize the population variability in response to a given stimulus,

and, hence, are themselves functions of the stimulus. By contrast, signal correlation is a property if the statistics of

the population response over the ensemble or density of stimuli. Signal correlations are obtained from the probability

function 〈
N∏
i=1

P (ri | s)

〉
s

≡ P0 (r1, . . . , rN ) , 32.

where 〈·〉s denotes an average over the ensemble or density of stimuli. Signal correlations are non-vanishing if〈
N∏
i=1

P (ri | s)

〉
s

6=
N∏
i=1

〈P (ri | s)〉s . 33.

Here, our focus will be on noise correlation and its effect upon sensory coding. Whenever we mention ‘pairwise

correlation’ between two neurons labeled by i and j, we refer to the quantity calculated as

cij =
〈(ri − 〈ri〉) (rj − 〈rj〉)〉√〈
(ri − 〈ri〉)2

〉 〈
(rj − 〈rj〉)2

〉 , 34.

where the average denoted by 〈·〉 is weighed by the conditional probability in Eq. (30). This correlation coefficient

follows the usual definition of a covariance normalized by the corresponding standard deviations. By analogy, we can

define pairwise signal correlation as

csignalij =

〈(
〈ri〉 − 〈〈ri〉〉s

) (
〈rj〉 − 〈〈rj〉〉s

)〉
s√〈(

〈ri〉 − 〈〈ri〉〉s
)2〉

s

〈(
〈rj〉 − 〈〈rj〉〉s

)2〉
s

, 35.

where the average denoted by 〈·〉s is weighed by the ‘prior probability’ over stimuli, P (s).

B. Breakdown of the mutual information in terms of signal and noise

We follow Refs. (Panzeri et al. 1999, Pola et al. 2003) which introduce a breakdown of the mutual information in

several terms that exhibit the various ways in which noise correlations may influence the coding performance. We

spell out a somewhat modified derivation, here, as the latter is possibly a more direct one. We reformulate the mutual

information (Eq. (5)) in a form that emphasizes the contributions of signal and noise correlations.

To achieve this, we invoke the independent (marginalized) probabilities defined in Eqs. (31) and (32), and rewrite

the mutual information in terms of the independent conditional probability, P0 (r | s), and ratios that carry the

contribution of correlations, P (r | s) /P0 (r | s) and 〈P (r | s)〉S / 〈P0 (r | s)〉S , as

I =

〈∑
r

P (r | s)
[
log

(
P (r | s) /P0 (r | s)

〈P (r | s)〉S / 〈P0 (r | s)〉S

)
+ log

(
P0 (r | s)
〈P0 (r | s)〉S

)]〉
S

. 36.
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We further separate independent probabilities from correlated ones by adding a subtracting to this quantity the

mutual information corresponding to an independent population of neurons, i.e., the term

Iindependent ≡

〈∑
r

P0 (r | s) log

(
P0 (r | s)
〈P0 (r | s)〉S

)〉
S

. 37.

This manipulation allows us to to obtain the form in Eq. (16), i.e.,

I = Iindependent + I
(1)
correlated + I

(2)
correlated, 38.

where I
(1)
correlated is defined in Eq. (18) and

I
(2)
correlated =

〈∑
r

[P (r | s)− P0 (r | s)] log

(
P0 (r | s)
〈P0 (r | s)〉S

)〉
S

. 39.

The quantity Iindependent represents the information carried by conditionally independent neurons; indeed, if there

is no noise correlation, P (r | s) = P0 (r | s), and both I
(1)
correlated and I

(2)
correlated vanish. It can be broken down further,

to extract the contribution from signal correlation, by bringing in the single-cell marginalized probabilities,

P (ri) ≡ 〈P0 (ri | s)〉s . 40.

With these, we can rewrite Iindependent as

Iindependent =

〈∑
r

P0 (r | s) log

(
P0 (r | s)∏N
i=1 P (ri)

)〉
S

−

〈∑
r

P0 (r | s) log

(
〈P0 (r | s)〉S∏N

i=1 P (ri)

)〉
S

= I
(1)
independent − I

(2)
independent, 41.

with

I
(1)
independent =

N∑
i=1

〈∑
r

P0 (ri | s) log

(
P0 (ri | s)
〈P0 (ri | s)〉s

)〉
s

42.

and

I
(2)
independent =

∑
r

〈P0 (r | s)〉S log

(
〈P0 (r | s)〉S∏N

i=1 〈P0 (ri | s)〉S

)
. 43.

By comparing the form of Eq. (42) with that of Eq. (5), we see that it expresses the sum over the information carried

by N independent neurons. Since I
(2)
independent vanishes in the absence of signal correlation, I

(1)
independent amounts to

the total mutual information if both signal and noise correlations vanish. The quantity I
(2)
independent thus represents

the loss of information due signal correlation; indeed, I
(2)
independent is nothing but the difference between the entropy

of the marginalized independent distribution,
∏N

i=1 〈P0 (ri | s)〉S , and the entropy of the marginalized correlated

distribution, 〈P0 (r | s)〉S ,

I
(2)
independent = −

∑
r

N∏
i=1

〈P0 (ri | s)〉S log

(
N∏
i=1

〈P0 (ri | s)〉S

)
+
∑
r

〈P0 (r | s)〉S log
(
〈P0 (r | s)〉S

)
, 44.

and, as such, is non-negative.

The quantity I
(1)
correlated represents the information carried by noise correlation. By rewriting the logarithm in Eq.

(18) as

log

(
P (r | s) /P0 (r | s)
〈P (r | s) /P0 (r | s)〉S

)
+ log

(
〈P (r | s) /P0 (r | s)〉S
〈P (r | s)〉S / 〈P0 (r | s)〉S

)
, 45.

then using convexity and Cauchy-Schwarz inequalities, one can show that I
(1)
correlated is non-negative. It vanishes if the

ratio P (r | s) /P0 (r | s) is independent of the stimulus. Thus, I
(1)
correlated accounts for stimulus coding by the values

of the noise correlations themselves (Fig. 3): the same way differential firing rates characterize different stimuli,

non-uniform noise correlation can also specify the stimulus.
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Finally, the quantity I
(2)
correlated represents the increment or decrement of information due to the interplay between

signal correlation and noise correlation. This appears if we rewrite its expression to emphasize the contribution of

signal correlation, by replacing the ratio

P0 (r | s)
〈P0 (r | s)〉S

by the product

∏N
i=1 P (ri)

〈P0 (r | s)〉S
· P0 (r | s)∏N

i=1 P (ri)
. 46.

We then rewrite I
(2)
correlated as

I
(2)
correlated =

〈∑
r

[P (r | s)− P0 (r | s)] log

(∏N
i=1 P (ri)

〈P0 (r | s)〉S

)〉
S

+

〈∑
r

[P (r | s)− P0 (r | s)] log

(
P0 (r | s)∏N
i=1 P (ri)

)〉
S

, 47.

but the second term in fact yields a vanishing contribution:〈∑
r

[P (r | s)− P0 (r | s)] log

(
P0 (r | s)∏N
i=1 P (ri)

)〉
S

=

N∑
i=1

〈∑
r

[P (r | s)− P0 (r | s)] log

(
P0 (ri | s)∏N
i=1 P (ri)

)〉
S

=

N∑
i=1

〈∑
ri

[P (ri | s)− P0 (ri | s)] log

(
P0 (ri | s)
P (ri)

)〉
S

= 0, 48.

since P (ri | s) = P0 (ri | s). Hence, I
(2)
correlated (Eq. (39)) can be written in the simpler form given in Eq. (19).
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