Representing infinite hyperbolic periodic Delaunay triangulations using finitely many Dirichlet domains - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Representing infinite hyperbolic periodic Delaunay triangulations using finitely many Dirichlet domains

Résumé

The Delaunay triangulation of a set of points $P$ on a hyperbolic surface is the projection of the Delaunay triangulation of the set $\tilde{P}$ of lifted points in the hyperbolic plane. Since $\tilde{P}$ is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize naturally. Assuming that the surface comes with a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation. Indeed, we prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the paper) smaller than $12g-6$ with respect to a Dirichlet domain. On the way, we prove that both the edges of a Delaunay triangulation and of a Dirichlet domain have some kind of distance minimizing properties that are of intrinsic interest. The bounds produced in this paper depend only on the topology of the surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic Delaunay triangulations in Euclidean space.
Fichier principal
Vignette du fichier
versionHAL.pdf (2.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03045921 , version 1 (08-12-2020)
hal-03045921 , version 2 (13-07-2021)
hal-03045921 , version 3 (06-12-2021)

Identifiants

  • HAL Id : hal-03045921 , version 2

Citer

Vincent Despré, Benedikt Kolbe, Monique Teillaud. Representing infinite hyperbolic periodic Delaunay triangulations using finitely many Dirichlet domains. 2021. ⟨hal-03045921v2⟩
472 Consultations
248 Téléchargements

Partager

More