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Representing infinite hyperbolic periodic Delaunay triangulations

using finitely many Dirichlet domains

Vincent Despré*� Benedikt Kolbe*� Monique Teillaud *§

Abstract

The Delaunay triangulation of a set of points P on a hyperbolic surface is the projection
of the Delaunay triangulation of the set P̃ of lifted points in the hyperbolic plane. Since P̃
is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize
naturally. Assuming that the surface comes with a Dirichlet domain, we exhibit a finite set of
points that captures the full triangulation.

Indeed, we prove that an edge of a Delaunay triangulation has a combinatorial length (a
notion we define in the paper) smaller than 12g− 6 with respect to a Dirichlet domain. On the
way, we prove that both the edges of a Delaunay triangulation and of a Dirichlet domain have
some kind of distance minimizing properties that are of intrinsic interest.

The bounds produced in this paper depend only on the topology of the surface. They
provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic
Delaunay triangulations in Euclidean space.
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1 Introduction

The classic edge flip algorithm of Lawson [Law77] computing Delaunay triangulations in the Eu-
clidean plane was recently extended to hyperbolic surfaces [DST20]. However, robust and efficient
software to compute Delaunay triangulations on hyperbolic surfaces, and particularly triply-periodic
minimal surfaces presented below, does not exist to date, as far as we know. A primary motivation
for the work in this paper is to attempt to help fill this gap by establishing fundamental theoretical
results in the hyperbolic case, similar to those that have led to the only such software for flat quo-
tient spaces [CT09a, Kru14, CPRT17, ORT20]. Moreover, our results yield structural insights of
independent interest into the relationship between different representations of hyperbolic surfaces
and Delaunay triangulation on them.

Motivation - Hyperbolic surfaces in other sciences and nature. One of the motivations
for this paper is the hyperbolic surface associated to the family of triply-periodic minimal surfaces
(TPMS) that contains the gyroid, the primitive, and the diamond surface. A TPMS is a minimal
surface in R3 that is invariant under three linearly independent translations, i.e. a rank 3 lattice
L3 [UHS10]. To associate a closed surface to a TPMS, one considers the TPMS as the lift to R3

of the closed surface Sg of genus g in the 3-torus T3 = R3/L3. This corresponds to glueing the
TPMS along the equivalent faces of a translational domain for L3. It turns out that the surface Sg
is always intrinsically hyperbolic [Mee90]. The gyroid, the primitive, and the diamond TPMS are
arguably the most prominent and simple examples of TPMS [STFH06] and have received consid-
erable attention in the mathematical, physical, chemical and biological as well as interdisciplinary
literature [Wey08, KEdCH14, HRDL03, HLL+96, DM98]. More recently, TPMS have also found a
role in the materials sciences as a scaffold for crystallographic structures [ERH13a, ERH13b], lead-
ing to both new mathematical formalisms [KE20b, KE20a] and a database of such structures [epi].
These three TPMS are closely related to each other [UHS10, Section 3.1][GW96] and give rise to
the same hyperbolic surface S3, of genus 3, embedded in T3.

Figure 1 shows a region of H2 in the Poincaré disk model and a portion of the diamond surface
in R3, also known as D-surface, illustrating how TPMS are covered by H2. The angles at which
triangles meet are the same in R3 as they are in H2, owing to the fact that the covering is conformal.

(a) Fundamental domain for the fundamental group
of S3 in the Poincaré disk model.

(b) A section of the D-surface in R3, together
with its smallest asymmetric triangle patches.

Figure 1: The covering of the diamond TPMS by H2.

The flat case. The computation of Delaunay triangulations in flat tori, which can be seen
equivalently as periodic triangulations in the Euclidean space, was addressed by Dolbilin and Hu-
son [DH97], who provided a first cornerstone for the algorithms and cgal packages handling the
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square/cubic periodicity [CT09b, CT09a, Kru14]; the algorithms were generalized later [CT16].
Their work was used again for the recent and, as far as we know, only implementations for general
periodic point sets in the Euclidean plane (or three-dimensional space) [ORT20]. The idea is as
follows. Let P̃ be a locally finite periodic point set in the plane E2. A finite set P̃f can be defined,
such that the infinite Delaunay triangulation DTP̃ can be deduced from the Delaunay triangulation

DTP̃f
; as P̃f is finite, DTP̃f

can be computed by any classical algorithm. In practice, the periodic

set P̃ is generated from a finite set of points in a fundamental domain (defined properly below) of
a lattice, which one can assume to be given as a parallelogram. The periodicity is obtained by the
action of the group of translations, isomorphic to Z2, generated by the two vectors corresponding
to the sides of the parallelogram. It is well-known that the size of P̃f is unbounded for an arbitrary

choice of parallelogram/translations. Figure 2 shows the special case when the infinite set P̃ is
obtained from a unique point ã; all blue points are images of ã under the action the group of
translations. We observe that there cannot exist a general bound on the size of P̃f for an arbitrary
choice of parallelogram/translations. Intuitively speaking, this is because there is no bound on how
stretched a fundamental domain F can appear for the same lattice points. For ever more long
and thin parallelograms, an edge ẽ in the Delaunay triangulation of P̃ may traverse an unbounded
number of copies of F (see Figure 3).

ã

ã′

u

v

x̃

Figure 2: Periodic point set P̃ given by the orbit of ã under the action of Z · u + Z · v on E2. A
fundamental domain is shaded. The (infinite) Delaunay triangulation of P̃ is shown in green.

However, if choosing as fundamental domain the Dirichlet domain Dx̃ of a point x̃, i.e. the
Voronoi cell of x̃ in the Voronoi diagram of Z2x̃ (Figure 4), then a bound can be proved on the
number of domains an edge of a Delaunay triangulation can traverse [DH97, ORT20]. The shape
of the Dirichlet domain Dx̃ does not depend on the chosen point x̃: for another point ỹ, Dỹ is a
translated version of Dx̃.

The hyperbolic case. In our setting, a hyperbolic surface is a closed and orientable topological
surface equipped with some hyperbolic metric of constant curvature −1. It is well-known that a
hyperbolic surface S is homeomorphic to the quotient H2/Γ of the hyperbolic plane H2 under the
action of a symmetry group Γ of H2, i.e. a discrete subgroup of the group of isometries of H2. That
S is a hyperbolic surface implies that Γ contains only orientation preserving isometries and has no
fixed points in H2. The group Γ can be naturally identified with the fundamental group π1(S) of S
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ẽ

ã

ã′

x̃

Figure 3: The same (black) lattice points correspond to fundamental domains that can be arbitrarily
elongated. The number of fundamental domains traversed by a Delaunay edge e is unbounded.

ẽ

ã

ã′

x̃

Figure 4: Tiling of E2 by translated images of the Dirichlet domain of x̃.
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Figure 5: Dirichlet domains of different points for the same group, which defines the genus 2 Bolza
surface [BTV16, Figure 9].

(after choosing base points appropriately). The symmetry group is also known as a Non-Euclidean
Crystallographic (NEC) group. The universal covering space of S is H2, and the projection map
π : H2 → S is a local isometry.

One can think of the projection map π as giving rise to tilings of H2 by copies of some funda-
mental domain for Γ. A fundamental domain F for the action of Γ is defined as a closed domain
such that ΓF = H2 and the interiors of different copies of F under Γ are disjoint. It is convenient to
also define an original domain as a (connected) subset Fo of a fundamental domain that contains
exactly one point of each orbit; then the closure Fo of an original domain Fo is a fundamental
domain. The restriction of π to Fo is then a bijection from Fo to S [Mas91].

We use the Poincaré disk model for the hyperbolic plane H2 [Ber09]. This is a conformal model
for H2 obtained by biconformally mapping H2 to the interior of the unit disk in E2 such that the
biconformal mappings of the unit disk correspond exactly to the orientation preserving isometries
of H2. This model is well suited for the study of Delaunay triangulations in H2 as hyperbolic circles
correspond to Euclidean circles, so that the combinatorial structure of a Delaunay triangulation is
equivalent to the Euclidean Delaunay triangulation defined by the same set of points [BDT14].

Given a finite point cloud P on S, P lifts to a locally finite1 point cloud P̃ in the covering
space H2. The Delaunay triangulation DTP̃ defined by P̃ in H2 projects to a triangulation DTP
on S, which serves as a definition for the Delaunay triangulation of P on S [DeB15, DST20].
We do not assume triangulations to be simplicial complexes in this paper, in contrast to some
previous work [BTV16, IT17]. In our setting, every finite point cloud on a hyperbolic surface has
an associated locally finite Delaunay triangulation [DeB15, Corollary 5.2][DST20, Proposition 8].

The Dirichlet domain DΓ
x̃ of a point x̃ can be defined as in the flat case; we will simply denote

it as Dx̃, unless there is an ambiguity. Note, however, that, unlike the flat case, the shape and even
the combinatorial structure of a Dirichlet domain depends on the chosen point x̃ (see Figure 5).
This is because NEC groups are non-Abelian, in contrast to the above situation in E2. Indeed,
for any isometry f and two points x̃ and f(x̃), there is a relation between the Dirichlet domains:

DΓ
f(x̃) = f(Df−1Γf

x̃ ) [Bea83, Section 9.4]. The methods to treat the Euclidean case depend crucially
on the fact that the involved groups are Abelian, so we need new tools to tackle the problem.

Notation. Throughout the paper, we use the same notation as above: S = H2/Γ is a (closed
orientable) hyperbolic surface; the group Γ is a NEC group with no fixed point; the projection map
is π : H2 → S. We denote objects in H2 with a tilde, and those on S = H2/Γ without; P always

1A collection of points P in a topological space X is locally finite if every point x ∈ X admits a neighborhood Ux

such that P ∩ Ux is finite, which implies that if K is compact in X, then P ∩K is finite.
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denotes a finite set of points on S, and P̃ the corresponding lifted point set in H2.

Results. Let Fo denote a fundamental domain (more precisely an original domain, as defined in
Section 2). Consider the Delaunay triangulation DTP̃ of the lifted point set P̃. Some edges are

incident to a point in P̃ ∩ Fo and a point lying in a translate of Fo under an element of Γ. In
Section 3, we define the combinatorial length of an edge, which relates to the number of translates
of Fo an edge traverses. For a general fundamental domain, the combinatorial length is unbounded.

Our main result, stated as Theorem 22 in Section 5, is an explicit bound when a Dirichlet
domain is chosen as a fundamental domain. The bound only depends on the genus of S.

The proof of the theorem relies on intersection properties of edges of Delaunay triangulations
and Dirichlet domains, studied in Section 4.

To the best of our knowledge, our results are the first of their kind for general hyperbolic
surfaces.

2 Dirichlet domains and Delaunay triangulations

Let us briefly recall a few definitions and basic properties. We refer the reader to textbooks for the
background on hyperbolic geometry [Rat06, Thu80].

We denote by dH2 the hyperbolic metric on H2. For a locally finite point set P ⊂ H2 and x̃ ∈ P,
we denote the closed Voronoi cell of x̃ by VPx̃ and the whole Voronoi diagram by VP . The Voronoi
diagram is a locally finite collection of convex subsets of H2 [DeB18, Lemma 5.2].

Definition 1 ([Bea83]). The (closed) Dirichlet domain Dx̃ of a point x̃ in H2 is the cell VΓx̃
x̃ of x̃

in the Voronoi diagram of the orbit Γx̃.

The Dirichlet domain Dx̃ can also be defined equivalently as

Dx̃ = { ỹ ∈ H2 | dH2(x̃, ỹ) ≤ dH2(x̃,Γỹ) } = { ỹ ∈ H2 | dH2(x̃, ỹ) ≤ dH2(Γx̃, ỹ) }.

The equality is true since Γ acts as isometries w.r.t. dH2 . In particular, we see that

z̃ ∈ Dx̃ ⇐⇒ x̃ ∈ Dz̃. (1)

Dirichlet domains and more generally Voronoi cells in H2 and E2 are bounded by geodesics,
which is why they are also known as Dirichlet and Voronoi polygons, respectively. A Dirichlet
domain Dx̃ is a fundamental domain for Γ and since S is compact, Dx̃ is also compact. Therefore,
Dx̃ has only a finite number of edges and the tesselation ΓDx̃ associated to Dx̃, called the Dirichlet
tesselation w.r.t. x̃, is a locally finite tesselation.

A Delaunay triangulation DTP̃ of a locally finite point set P̃ ⊂ H2 is combinatorially a Eu-

clidean Delaunay triangulation with vertex set P̃, but with geodesic edges [BDT14]. Note that the
circumcircles of faces in DTP̃ are all compact [DeB18, DST20]. Though we use the term triangu-
lation, we also consider the case where more than three cocircular points form a non-triangulated
polygonal face. In such a case, we observe that such a face has vertices on a circle and is thus
geodesically convex in H2 (since any interior angle is less than π). We can thus triangulate it
arbitrarily in a Γ-invariant way.

The Delaunay triangulation DTP̃ of a finite point set P ⊂ S on a surface S is defined as the

projection, to S, of the Delaunay triangulation in H2 of the lifted point set P̃ := π−1(P). Let us
also recall the following property:
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Proposition 2. ([DST20, Proposition 8],[DeB15, Corollary 5.2]) The 1-skeleton of the Delaunay
triangulation DTP on S is an embedded graph on S.

When a fundamental domain F is a polygon, its edges are identified pairwise under the action
of Γ. We fix one representative of each equivalence class of open edges of F under the action of Γ
to obtain a set E of edges. We also choose one representative of each vertex orbit to obtain a set
V of vertices. Let int(M) denote the interior of a set M .

Definition 3. Let F ⊂ H2 be a polygonal fundamental domain for Γ. An original domain Fo

associated to F is defined as a subset of F consisting of int(F) ∪ E ∪ V .

Special cases of Definition 3 have been considered in the literature [CT16, IT17].

3 Combinatorial length

We observe that the lattice of H2 formed by a polygonal fundamental domain and its copies, i.e.
its images under Γ, can be decomposed into layers:

Definition 4. Let F ⊂ H2 be a polygonal fundamental domain for Γ. Let x̃ be a point in a fixed
original domain Fo.
Consider the set {F i

1}i of nontrivial copies, under the action of Γ, of F with F i
1 ∩ F 6= ∅. Each F i

1

corresponds to a nontrivial f i1 ∈ Γ such that f i1Fo ⊂ F i
1. We call

N1 :=
⋃

i

f i1Fo

the first neighborhood layer of Fo. For a point ỹ ∈ N1, the combinatorial distance dcFo
(x̃, ỹ) from

x̃ to ỹ is equal to 1. We repeat this process inductively. Consider all copies {F i
n}i of F such that

F i
n ∩ F

j
n−1 6= ∅ for some i, j but such that F i

n is not contained in any mth neighborhood layer
Nm for m ≤ n − 1. Each F i

n corresponds to a nontrivial f in ∈ Γ such that f inFo ⊂ F i
n. The nth

neighborhood layer is defined as

Nn =
⋃

i

f inFo.

The combinatorial distance from x̃ to a point ỹ ∈ Nn is dcFo
(x̃, ỹ) = n. The combinatorial length

dcFo
(ẽ) of a geodesic segment ẽ designates the combinatorial distance between its endpoints.

The (maximal) combinatorial length of a triangulation T w.r.t. Fo is dcFo
(T ) = maxx̃∼ỹ d

c
Fo

(x̃, ỹ),
where x̃ ∼ ỹ if they are joined by an edge in the triangulation.

Remark that two different neighborhood layers have empty intersection.
Since F is compact, the combinatorial length of a geodesic segment ẽ is finite if and only if ẽ

crosses only a finite number of copies of the fundamental domain F . In particular, since a Dirichlet
tesselation is locally finite, the combinatorial length of a triangulation with locally finite point set
and finite vertex degrees, such as the Delaunay triangulation, is always finite.

Figure 6 illustrates the definition of neighborhood layers, in a non-generic case. In this example,
the translations that identify opposite edges of the Dirichlet domain of the origin generate the group
ΓB of the Bolza surface. All vertices of the Dirichlet fundamental domain are equivalent under ΓB.

Assume that the tesselation induced by F and Γ features only vertices of degree 3, which is the
generic case [Bea83, Theorem 9.4.5]. Then the combinatorial distance between points is equal to
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(a) Tesselation of H2 formed by copies of the Dirich-
let domain of the origin for ΓB [BTV16, Figure 9].

(b) The first neighborhood layer (red) built around
the Dirichlet domain of the origin (blue).

Figure 6: Dirichlet fundamental domain and tesselation for the Bolza surface.

the graph distance in the 1-skeleton of the dual triangulation, between the copies of the original
domain Fo that the points lie in.

Let us look back at our objective, as described in the introduction. Using an original domain
Fo, DTP̃ can be reconstructed by considering the points P̃ ∩Fo and the edges in DTP̃ that connect
to these. One question to be solved is how many fundamental domains an edge can intersect.
Unfortunately, as in the flat case above, there is no bound on this number of intersections, as we
now show.

Proposition 5. Let n ∈ N and c a simple nonseparating path on S. There is a fundamental domain
for Γ in H2 such that the combinatorial length of the lift c̃ of c is greater than n.

Proof. We construct a fundamental domain F1 with one vertex orbit for Γ such that there is a
single edge c̃1 of F1 that intersects c̃, and does so transversally, both in their interiors, as we now
explain. By assumption c is a simple path on S. Extend c arbitrarily to obtain a simple nontrivial
nonseparating closed path cC ⊂ S if necessary. Since cC is nontrivial, we can find another simple
closed nontrivial non-separating path c1 ⊂ S that intersects cC exactly once, somewhere in the
interior of e. By applying a homeomorphism f of S, we map cC ∪ c1 to the paths on S shown
in Figure 7a [FM12, Section 1.3.3] and consider the graph f(c1) ∪ v, with vertex v ∈ f(c1 − cC).
Augmenting this graph by attaching 2g − 1, where g is the genus of S, closed paths c′2, ..., c

′
2g as

illustrated in Figure 7b, we obtain a graph G′ whose edges only intersect in v. Cutting open S

. . .f(cC)

f(c1)

f(c)

v

(a)

. . .

v

f(c1)

c′2

c′3 c′4
c′5 c′6

c′2g−1

f(c)
f(cC) c′2g

(b)

Figure 7: The graph G′ in the proof of Proposition 5.

along the graph G′ produces a disk, as G′ yields the standard presentation of the fundamental
group of a surface [Hat02, p. 5]. Any graph Ĝ such that S− Ĝ is a disk gives rise to a fundamental
domain in H2 for Γ, by taking as interior of the domain a connected component of the preimage
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π−1(S−Ĝ) [LM91, Theorem 5.1]. Therefore, G := f−1(G′) gives rise to the sought-for fundamental
domain F1 ⊂ H2, with G ∩ c = c1 ∩ c. Thus, c̃ ∩ ∂F1 = c̃ ∩ c̃1, for an appropriate lift c̃1 of c1.
Consider the Dehn twist t about cC . For our purposes, it suffices to note that t can be represented
as a homeomorphism of infinite order that maps G to a similar graph and therefore gives rise to
another fundamental domain. The Dehn twist t only changes the edges of G it intersects, so by
construction, it leaves invariant all other edges but c1. The number of intersections of tM (c1) with
cC , where tM = t ◦ t ◦ ... ◦ t (M -times), is equal to M [FM12, Proposition 3.2]. Therefore, there is a
representative in the isotopy class of tM (c1) that intersects cC M times, without forming any bigons
which by [FM12, Proposition 1.7] and [FM12, Section 1.2.7] means that these intersections cannot

be eliminated by using homotopies. In H2, c̃ then intersects M distinct copies of t̃M (c1). Therefore,
the combinatorial length of the edge c̃ can be made arbitrarily large by successive application of
the Dehn twist t.

Remark 6. The statement of Proposition 5 remains valid if one drops the assumption that the
simple path is nonseparating, as long as the path is non-trivial. The proof of this statement with
the above methode would entail different cases according to the genera of the two parts of the surface
resulting from cutting it along the given path. For our purposes, the more restricted version of the
proposition suffices.

Corollary 7. There is no bound on the combinatorial length of an edge in DTP̃ for arbitrary
fundamental domains.

Proof. Fix an edge ẽ of DTP̃ whose projection e to S is not closed, or, if closed, is nonseparating.
To see that such an edge exists, observe that the only case where all edges are closed is the case
where P̃ = Γx̃. In this case, since DTP is a triangulation, the closed paths in DTP generate the
fundamental group Γ. By Hurewicz’ theorem [Hat02, Theorem 2A.1], the paths in DTP are a basis
of the homology group of S, and therefore cannot all be separating, because separating paths are
homologically trivial. By Proposition 2, ẽ is simple, and thus Proposition 5 concludes the proof.

This motivates the use of Dirichlet domains for our purposes. The following lemma generalizes
a result known in the flat case [DH97]. In particular, when P̃ = Γx̃, the circumcenter lies in the
Dirichlet domain Dx̃, as in the flat case [DH97, Lemma 3.2].

Lemma 8. Let x̃ be a point in P̃ and ∆̃ a triangle of DTP̃ with vertex x̃. The (hyperbolic)

circumcenter of ∆̃ lies in V P̃x̃ .

Proof. Let ω
∆̃

denote the circumcenter of ∆̃. Assume that ω
∆̃

is contained in some other cell of

the Voronoi diagram of P̃. We have P̃ ∩ int(D
∆̃

) = ∅, where D
∆̃

denotes the disk bounded by

C
∆̃

. However, if ω
∆̃

is contained in int(V P̃ỹ ) for some ỹ 6= x̃, then dH2(ω
∆̃
, ỹ) < dH2(ω

∆̃
, x̃), i.e.

ỹ ∈ int(D
∆̃

), in contradiction to P̃ ∩ int(D
∆̃

) = ∅.

4 Half-minimizers

At the heart, our approach is based on the fact that two paths that minimize the distance between
points cannot intersect too many times. Edges of a Delaunay triangulation or of a Voronoi diagram
do not generally have this feature, but they do have related properties. This motivates the following
definitions.
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Definition 9. A distance path between two points on a surface S is a path, i.e. the image of a
continuous map from [0, 1] to S, that has the minimum length out of all paths on S with the same
endpoints. We also call a path c̃ in H2 a distance path if it is the lift of a distance path c in S.

A distance path γ is necessarily a geodesic on S, but in general geodesics only locally minimize
distances and are not distance paths. Furthermore, the property of being a distance path is inherited
by subarcs. A distance path is also necessarily simple.

Definition 10. A path c from x to y ∈ S is a half-minimizer if it is the concatenation of at most
two distance paths. We call the point m where the two distance paths join a half-point of c. We
also call a half-minimizer in H2 the lift of a half-minimizer in S.

A half-minimizer is smooth except that it may have a kink at the half-point m. If there is such
a kink then m is uniquely defined, otherwise this is not necessarily the case.

Let us study intersection properties of distance paths or half-minimizers.

Lemma 11. Two distinct distance paths on S that do not have a subarc in common cannot intersect
each other more than once in their interior. If an intersection occurs at an endpoint, then there
cannot be an intersection in the interior. Moreover, a distance path is necessarily simple.

Note that two distance paths can still share the same two endpoints.

Proof. Let c1 and c2 be distance paths between the points x1 and y1, and x2 and y2, respectively.
Assume that c1 and c2 intersect each other at least 2 times in their interiors, at points z and z′.

Note that the intersection of geodesics not sharing a subarc has to be transversal, meaning
that their tangent vectors cannot be parallel at the point of intersection. This can be seen using a
general argument concerning geodesics in Riemannian manifolds. If two geodesics γ1, γ2 intersected
nontransversally at some point p, then γ1 = γ2 locally, after reparametrization. This is because
geodesics are the solution of a second-order differential equation, and these are uniquely determined
by their initial values, i.e. the point p and their tangent vectors at p, so after rescaling the tangent
vector if necessary, the geodesics agree [O’N83, Chapter 3].

Since both c1 and c2 are distance paths, the portion of both c1 and c2 connecting z to z′ realize
the distance between these points as geodesic arcs. Therefore, we can connect x1 to z along c1,
then connect z to z′ along c2, and z′ to y1 along c1 to obtain a path c3 connecting x1 to y1 with
the same length as c1. However, since the intersections of c1 and c2 are transversal, c3 is not a
geodesic, as it features kinks at z and z′. By the Hopf-Rinow theorem [O’N83, Theorem 5.21], we
can then further shorten the path c3 by applying a homotopy with fixed endpoints and obtain a
path connecting x1 and y1, homotopic to c3 and shorter than c1, a contradiction.

The second statement of the lemma corresponds to the situation where either x1 = z or y1 = z′.
The same argument also shows that a distance path is simple.

Lemma 12. A half-minimizer can intersect a distance path at most 2 times, or the half-minimizer
and the distance path have a common subarc.

Proof. The only case that is not immediate from Lemma 11 is the case where a distance path γ
intersects a half-minimizer c at both endpoints x and y and at the half-point m of c. Let γ join x
to y, passing through m, and let cxm, cym be the two distance paths on c, connecting x to m and m
to y, respectively. Now, if cxm intersected γ at m nontransversally, then cxm would be included in γ,
similarly to the proof of Lemma 11 above. If we exclude such cases, then we find a contradiction
to γ being a distance path by considering the geodesic in the homotopy class with fixed endpoints
of the path that follows first cxm from x to m and then γ from m to y.
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We now show that the edges of Delaunay triangulations and Dirichlet domains are either half-
minimizers or isotopic to a half-minimizer.

Lemma 13. Let x̃ be a point in H2. For any point ỹ in the Dirichlet domain Dx̃, the geodesic
segment γ̃ that joins x̃ to ỹ projects to a distance path in S. Conversely, if a geodesic γ from
x = π(x̃) to y is a distance path on S, then the lift γ̃ of γ based at x̃ is contained in Dx̃.

Proof. As Dx̃ is convex, a geodesic γ̃ between x̃ and ỹ ∈ Dx̃ is contained in Dx̃. Assume, for the
sake of contradiction, that there is a simple geodesic γ′ on S joining x = π(x̃) and y = π(ỹ), shorter
than γ = π(γ̃). Since geodesics connecting points are uniquely determined by their endpoints in
their homotopy class in S [Bus10, Theorem 1.5.3], γ′ is not homotopic to γ. So, the lift γ̃′ of γ′

based at x̃ is not equal to γ̃ and therefore joins x̃ to a point ỹ′ 6= ỹ, equivalent to ỹ under the action
of Γ. Moreover, γ̃′ is shorter than γ̃ because π is a local isometry and therefore the length of a
geodesic in H2 and its projection in S are equal [GHL04, Proposition 2.109], a contradiction. For
the converse statement, simply observe that if the endpoint ỹ of γ̃ was not contained in Dx̃, then
it would be strictly closer to another point x̃′ ∈ Γx̃. This contradicts the minimality of γ, by the
first part of the proof, since then there is a distance path γ̃′ in D

x̃′
that projects to a distance path

γ′ shorter than γ.

Remark 14. A Delaunay edge ẽ is not always a half-minimizer (Figure 8a). Indeed, consider the
set Γx̃, for a point x̃ ∈ H2. If a Delaunay edge ẽ incident to x̃ and some x̃′ ∈ Γx̃ projects to a
(closed) half-minimizer in S, then the midpoint of ẽ must lie on the boundary ∂Dx̃ by Lemma 13.
Said in another way, such a half-minimizer intersects the interior of exactly two Dirichlet domains.

ẽ

x̃

ỹ

(a) A generic Dirichlet fundamental domain and
a geodesic ẽ, in cyan, connecting points x̃ and ỹ,

isotopic to the blue half-minimizer.

ẽ

x̃

ỹ

ω
∆̃

∆̃

c̃
B

(b) The isotopy in the proof of Proposition 15
moves the edge ẽ over the shaded bigon B to the

(blue) path c̃.

Figure 8: Illustrations for Remark 14 (left) and Proposition 15 (right).

Proposition 15. Let x ∈ P and e an edge of DTP incident to x. The edge e is isotopic with fixed
endpoints to a half-minimizer c on S, based at x. The path c is simple and, if closed, nontrivial.

Proof. In the covering space H2, let ∆̃ be a triangular face of DTP̃ , and ω
∆̃

its circumcenter.

Consider the path c̃ that connects ω
∆̃

to two vertices x̃ and ỹ of ∆̃, as shown in Figure 8b. The

point ω
∆̃

lies in Dx̃, by Lemma 8 and because Γx̃ ⊂ P̃ implies that V P̃x̃ ⊂ Dx̃. Similarly, ω
∆̃

lies in
Dỹ. So, by Lemma 13, c̃ is a half-minimizer based at either endpoint, with half-point ω

∆̃
.

Consider now the Dirichlet domain Dω
∆̃

, which contains x̃ and ỹ, by equivalence (1) (page 5) and

Lemma 8. Since Dω
∆̃

is convex, it also contains the geodesic edge ẽ of ∆̃ with the same endpoints,

x̃ and ỹ, as c̃. The bigon B̃ formed by c̃ and ẽ is then completely contained in Dω
∆̃

. Therefore,
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there is an isotopy inside Dω
∆̃

from ẽ to c̃, which fixes x̃ and ỹ. Note that B̃ does not contain any

points of P̃ (except for x̃ and ỹ), by definition of DTP̃ and convexity of the disk circumscribing

∆̃. The tesselation of H2 by copies of Dω
∆̃

is of course Γ-invariant. Since Dω
∆̃

contains only one
representative of every point moved in the isotopy, one obtains a Γ-invariant isotopy of the whole
plane H2 by using the same constructed isotopy in every copy of Dω

∆̃
.

That c = π(c̃), if closed, is nontrivial is clear, and simple follows from Proposition 2 for DTP
and the fact that c is isotopic to the projection of ẽ.

We now consider the edges of a Dirichlet domain.

Definition 16. Let ẽ be an edge of either DTP̃ or V P̃ . The edge ẽ is said to be centered if it
intersects its dual edge.

The concept of centered edges has been studied before [DeB15], restricted to Voronoi edges.

Proposition 17. Each centered edge of Dx̃ is a half-minimizer and each non-centered edge is a
distance path.

Proof. Let ẽ be an edge of Dx̃, with endpoints by ã and b̃, and let Dx̃1
be the other domain in ΓDx̃

that is also incident to ẽ. The group of conformal transformations of the unit disk acts transitively
on triples on the boundary of the unit disk, so, we can choose to map the geodesic in H2 containing
ẽ to the real axis by mapping its intersections with the boundary to the points 1 and −1 on this
axis. Furthermore, we can assume that the points x̃ and x̃1 lie on the imaginary axis.

For any point z̃ ∈ ẽ, the geodesic segments γ̃z ⊂ Dx̃ and (γ̃z)1 ⊂ Dx̃1
, from x̃ and x̃1 to z̃

respectively, together form a half-minimizer, by Lemma 13.
We consider first the case that ẽ is non-centered and assume, without loss of generality, that

dH2(ã, x̃) ≤ dH2 (̃b, x̃). See Figure 9(Left). Note that the circle C0(̃b) passing through b̃ and centered
at x̃ bounds a disk D0(̃b) the interior of which does not contain any points in Γb̃, by Lemma 13.
There is a similar disk D1(̃b), bounded by the circle C1(̃b) 3 b̃ with center x̃1. Since ẽ is the
perpendicular bisector of x̃ and x̃1, the radii of C0(̃b) and C1(̃b) agree. The edge ẽ is necessarily
shorter than γ̃b, by non-centeredness. Indeed the circles are symmetric w.r.t. a reflection along
the geodesic from x̃ to x̃1. Therefore, by the triangle inequality in H2, 2l(ẽ) < 2l(γ̃b), where l(c)
denotes the hyperbolic length of a geodesic segment c. Whence, one easily sees that the cyan circle,
centered at ã and passing through b̃, does not contain any point of Γb̃, so, ẽ is a distance path.

x̃

x̃1

ã b̃
ẽ

γ̃b

γ̃a

C1(̃b)

C0(̃b) x̃

x̃1

b̃

C1(̃b)

C0(̃b)

ã
m̃

C (̃b)

Figure 9: Proof of Proposition 17: (Left) non-centered case (Right) centered case.

Consider now the case where ẽ is centered. See Figure 9(Right). Projecting x̃ (and x̃1) to its
nearest point on ẽ, we obtain a point m̃ ∈ ẽ between ã and b̃. We claim that m̃ is a half-point of
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the half-minimizer ẽ, which will finish the proof. For this, similarly to above, we consider the open
disks D0(̃b) and D1(̃b) around x̃ and x̃1, respectively, which do not contain any point equivalent to
b̃. Their boundary circles are shown in the figure along with the green circle C (̃b) centered at m̃
and passing through b̃. The interior disk D(̃b) of C (̃b) is included in the union D0(̃b)∪D1(̃b), which
shows that the subarc of ẽ from m̃ to b̃ is a distance path. Consider now the disks bounded instead
by the dashed circles, centered at x̃ and x̃1, respectively, and passing through ã. One deduces,
similarly to above, that the cyan dashed circle centered at m̃ passing through ã bounds a disk not
containing any points of Γã. Therefore, the subarc of ẽ from m̃ to ã is a distance path.

5 Main result

There are several definitions of convexity on a surface in the literature. We choose the following
definition, adapted to our case study.

Definition 18. A simply connected subset K ⊂ S is convex if for every two points x, y ∈ K, there
is a unique distance path in K with endpoints x and y.

Proposition 19. A (closed) triangle in S whose edges are distance paths is convex.

Proof. For a triangle ∆ in S, fix a lift ∆̃ ⊂ H2. The triangle ∆̃ is obviously convex in H2; it contains
a unique geodesic joining any two points in it. We will prove that, if the edges of ∆ are distance
paths, any such geodesic is also a distance path. Denote the geodesic connecting two points z̃1 and
z̃2 in H2 by γ̃z̃1z̃2

.

We first prove that the (unique) geodesics in ∆̃ from corners to arbitrary points on its edges are
distance paths. Denote the vertices of ∆̃ by x̃, ỹ, and z̃. Consider w.l.o.g. the corner ỹ. The edges
γ̃ỹz̃ and γ̃ỹx̃ of ∆̃ are distance paths so z̃, x̃ ∈ Dỹ by Lemma 13. Since Dỹ is convex, γ̃x̃z̃ ⊂ Dỹ and
therefore, again by Lemma 13, there is a distance path from ỹ to any point on the edge γ̃x̃z̃.

Assume that there are two points p̃′1, p̃
′
2 ∈ ∆̃ such that γ̃p̃′1p̃′2 is not a distance path. The geodesic

through p̃1
′ and p̃2

′ that is inside ∆̃ crosses the boundary of ∆̃ in two points p̃1 and p̃2 such that
the part of the geodesic between p̃1 and p̃2 contains p̃1

′ and p̃2
′. This geodesic cannot be a distance

path between p̃1 and p̃2 if its subpath between p̃′1 and p̃′2 is not a distance path. For the proof of

the proposition, it is therefore enough to show that geodesics in ∆̃ that connect two points of the
boundary are distance paths.
So, assume that p̃1 ∈ γ̃x̃z̃ and p̃2 ∈ γ̃ỹz̃, and consider the geodesic

γ̃p̃1ỹ ⊂ ∆̃. Since ỹ is a corner of ∆̃, γ̃p̃1ỹ is a distance path and

therefore the triangle ∆̃′ ⊂ ∆̃ with vertices p̃1, ỹ, and z̃ is a triangle
with distance paths as edges. The geodesic γ̃p̃1p̃2

connects a corner of

∆̃′ to a point on its edge, so it is a distance path by the first part of
the proof. ỹ

p̃1

x̃

z̃p̃2

∆̃′

∆̃

We can partition a Dirichlet domain into triangles whose projections to S are convex. The
notation is illustrated in Figure 10a in the case of a dodecahedron. Let {ṽi}k−1

i=0 , with ṽk = ṽ0,
denote the k corners of Dx̃, indexed counter-clockwise, and let s̃i denote the side with endpoints ṽi
and ṽi+1, for i = 0, . . . , k − 1. We know by Proposition 17 that s̃i is a half-minimizer or a distance
path; in the first case we denote as m̃i a half-point of s̃i; in the second case we choose an arbitrary
point m̃i in the interior of s̃i. The two subarcs of s̃i obtained in this way are distance paths; let us
denote them as σ̃2i, with endpoints ṽi and m̃i, and σ̃2i+1, with endpoints m̃i and ṽi+1, respectively.
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ṽi

ṽi+1

s̃i+1

x̃

m̃i
∆̃2i

∆̃2i+1

ṽi+2

σ̃2i+1

σ̃2i

(a) The triangles partitioning Dx̃ (illustration for
the special case of TMPS).

γ̃γ̃0

γ̃1

γ̃2

p̃1
Dx̃1

Dx̃

p̃

f1(p̃1)

p̃2

f2(p̃2)

γ̃<2

(b) Representation of a geodesic path γ as a
sequence of segments in Dx̃. The path γ̃<2 is also

shown as a dashed part of γ.

Figure 10: Partitioning into triangles and paths on the surface represented as a sequence of paths
in a fundamental domain. The fundamental group identifies opposite edges of the dodecagon.

Denote now as γ̃z the geodesic segment between x̃ and z̃ for any point z ∈ ∂Dx̃; by Lemma 13,
γ̃vi and γ̃mi are distance paths, for i = 0, . . . , k − 1. Let us denote the closed triangle formed by x̃

and σ̃2i as ∆̃2i and the triangle formed by x̃ and σ̃2i+1 as ∆̃2i+1; the triangles ∆̃j , j = 0, . . . , 2k− 1

partition Dx̃. By Proposition 19, the projection ∆j of each ∆̃j on S is convex.

Lemma 20. Let Dx̃ be a Dirichlet domain with k edges. The combinatorial length of a distance
path with an endpoint in the original domain (Dx̃)o is bounded by k/2.

Before we prove the result, let us observe that a geodesic path γ̃ in H2 that projects to a path γ
on S can be represented as a sequence of geodesic segments in a Dirichlet domain, as illustrated in
Figure 10b. Let p̃ ∈ (Dx̃)o be an endpoint of γ̃. If γ̃ ⊂ (Dx̃)o then the sequence is reduced to {γ̃}.
Otherwise, denote as γ̃0 the intersection γ ∩ (Dx̃)o. The path γ̃ exits Dx̃ at the intersection point
p̃1: {p̃1} = γ̃ ∩ ∂Dx̃. The path γ continues in a Dirichlet domain Dx̃1

. By using the appropriate
element of f1 ∈ Γ, one can map γ̃ ∩ (Dx̃1

)o back into Dx̃ and obtain another geodesic segment γ̃1,
which may again exit Dx̃. Repeating this process until we reach the other endpoint of γ yields a
collection {γ̃n}r−1

n=0 of geodesic arcs in Dx̃. If we keep track of the order of the paths, then they
project to a sequence {γn}r−1

n=0 of paths in S whose concatenation corresponds to γ. Note that the
geodesic arcs are disjoint in Dx̃ if and only if γ̃ projects to a simple path on S. We denote with
γ<l the concatenation of the l first arcs γ0, . . . , γl−1 and with γ̃<l the lift of γ<l to H2, starting at
p̃. Observe that γ̃<r = γ̃.

Proof. Let γ̃ be a distance path with endpoint p̃ ∈ (Dx̃)o. We can represent γ̃ by a sequence of
subarcs {γ̃n}r−1

n=0 in Dx̃ as above. Assuming that γ̃ consists of more than one segment, every γ̃n is
incident to two points on ∂Dx̃, except possibly γ̃0 and γ̃r−1.

Observe that since γ̃ is a distance path, the intersection γ∩int(∆j) is connected for all j. Indeed,
if it were not connected, then there is a distance path that connects two connected components
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of the intersection by the convexity of the triangles ∆j in S (Proposition 19). This distance path
would intersect the distance path γ more than once, which is impossible by Lemma 11. We similarly
see that the only way γ ∩∆j is not connected is if γ intersects one triangle in only two points on
the boundary, at the start and endpoint of γ. Therefore, aside from the start and endpoint, if γ̃n
intersects a triangle ∆̃j for some n, then γ̃l cannot intersect the same ∆̃j for l 6= n.

Recall the definition of neighborhood layers (Definition 4) and Figure 6b: if after leaving the
(red) central Dirichlet domain, a path intersects consecutive sides of Dirichlet domains sharing
the same corner of this red domain, then it stays in the blue layer. More generally, if the two
endpoints of a segment γ̃l lie on two adjacent sides of Dx̃, then the combinatorial length dc(γ̃<l+1)
is the same as the combinatorial length dc(γ̃<l). So, as we want to find an upper bound on the
combinatorial length of a Delaunay edge, we will assume that the two endpoints of each segment
γ̃n, n = 1, . . . , r−2 lie on non-consecutive sides of Dx̃, so that the combinatorial length of γ̃ is r−1.

Remark now that such a segment γ̃n, n ∈ {1, . . . , r − 2} must intersect at least four triangles
∆2j−1,∆2j ,∆2j+1, and ∆2(j+1) for some j, where the indices are taken modulo 2k. (Note that in
the special case when γ̃n passes through a corner of a Dirichlet domain, the number of triangle
orbits intersected by γ̃n is at least 6 as the triangles ∆j are closed.) There are 2k triangles ∆j

in total, and a triangle cannot be intersected by more than one segment γ̃n, n ∈ {0, . . . , r − 2}.
Moreover, γ̃0 intersects at least one triangle. Thus, r − 2 ≤ (2k − 1)/4 = k′ − 1/4, as k = 2k′ is
even. Since r and k′ are integers, in fact r − 2 ≤ k′ − 1, and the combinatorial length r − 1 is thus
at most k/2.

The previous lemma gives a bound, depending only on the genus, for the maximal combinatorial
length of a Delaunay triangulation in the restricted case where all its edges are distance paths on
S. Note that this case corresponds to the framework of previous work [IT17, BTV16, ORT20].
Indeed, the condition there is that each Delaunay edge is smaller than half the length of the
smallest noncontractible loop on S; then any path in S joining two points of P not homotopic to
a Delaunay edge e between these points is strictly longer than e, which implies that all edges in
DTP̃ are distance paths.

Corollary 21. Let S = H2/Γ be a genus g hyperbolic surface and Dx̃ be a Dirichlet domain for
the NEC group Γ. For a set of points P on S, if the edges of DTP are distance paths, then the
maximal combinatorial length of edges of DTP̃ in H2 is bounded by 6g − 3.

Proof. The number of edges of a Dirichlet fundamental domain is at most 12g − 6, by a direct use
of the Euler characteristic [Bea83, Theorem 10.5.1]. The result follows from Lemma 20.

Note that the upper bound can only be attained in the generic situation where all vertices of
ΓDx̃ have degree 3.

Theorem 22. Let Dx̃ be a Dirichlet domain, with k edges. Let P be a finite set of points on S and
DTP̃ the Delaunay triangulation of the lifted set of points P̃ ⊂ H2. The maximal combinatorial
length of a Delaunay edge is bounded by k.

Proof. Consider a path c̃ joining ã ∈ Dx̃ and b̃ ∈ H2. The geodesic from ã and b̃ in H2 is unique;
it projects to a geodesic on the surface which is also unique in its homotopy class (with fixed
endpoints) [Bus10, Theorem 1.5.3]. So, the homotopy class of c is uniquely determined by which
copy of the original domain (Dx̃)o contains b̃.

As a consequence, if the combinatorial length of ẽ were larger than the sum of the combinatorial
lengths of two distance paths, then it could not be isotopic to the concatenation of two such
paths. However, the projection to S of a Delaunay edge ẽ in H2 is isotopic to a half-minimizer by
Proposition 15. The result now follows directly from Lemma 20.
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Corollary 23. Let S = H2/Γ be a genus g hyperbolic surface and Dx̃ be a Dirichlet domain for
the NEC group Γ. For a set of points P on S, the maximal combinatorial length of edges of DTP̃
in H2 is bounded by 12g − 6.

Again, the upper bound can only be attained in the generic situation.
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