Two-Color Scheme For A Multi-Beam Satellite Return Link: Impact Of Interference Coordination
Résumé
The return link of broadband satellite systems has recently received more attention due to the spread of multi-beam antennas which enable spatial frequency reuse, and thus increase drastically the number of users that can potentially be served by one satellite. While interference isolation has so far been the way to go, with regular four-color frequency reuse scheme, there is a growing interest in densifying the frequency usage as is being done in cellular networks. In this paper, we address the return link radio resource allocation challenges, from spectral resource allocation to user scheduling, including modulation and coding scheme (MODCOD) selection. Our contributions highlight the potential gains of a two-color scheme and shed light on several levers to reap its benefits through interference management. We first consider the possibility to use a two-color scheme, while keeping the MODCOD selection and the scheduling local to each beam and we show that even though it yields a potential performance gain (+16%) with respect to the state of the art (SoA) (based on four colors), it is not viable due to a very high-block loss rate. Therefore, we propose a simple-yet fast and efficient-coordinated MODCOD selection process that alleviates the need of estimating interference and reduces drastically decoding failures. This coordination step offers significant gains (+58%) over the SoA, while leaving the per beam scheduler unchanged. Finally, we formulate a joint user scheduling and MODCOD selection problem across all beams and propose an offline heuristic to solve it efficiently. We obtain a 83% gain with respect to the SoA, but with higher computational complexity. Still, it confirms the great potential of coordinated scheduling.