Nakayama's lemma and applications
Résumé
We give two versions of Nakayama's lemma in the context of commutative rings and some applications, in particular, we prove two versions of Krull's intersection theorem. To do so, we will use the Artin-Rees lemma, for which we will give a detailed proof. We will suppose that all rings are commutative with identity.
Domaines
Anneaux et algèbres [math.RA]Origine | Fichiers produits par l'(les) auteur(s) |
---|