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Nakayama's lemma and applications

Rodney Coleman, Laurent Zwald

December 4, 2020

Abstract

We give two versions of Nakayama's lemma in the context of commutative rings and some

applications, in particular, we prove two versions of Krull's intersection theorem. To do so,

we will use the Artin-Rees lemma, for which we will give a detailed proof. We will suppose

that all rings are commutative with identity.

There are various closely related results all of which bear the name Nakayama's lemma. Here
we will prove two such results.

Theorem 1 (Nakayama's lemma version 1) Let R be a ring, M a �nitely generated module overNakathm1

R and I an ideal in R, with IM =M . Then there exists a ∈ I such that (1− a)M = 0.

proof Let x1, . . . , xm be generators of M over R. Since M = IM , each xi may be written
xi =

∑m
j=1 zijxj , with zij ∈ I. In other words,

∑m
j=1(δij − zij)xj = 0, where δij is the Kronecker

symbol. Let d be the determinant of the m ×m matrix A = (δij − zij). We have d = 1 − a,
where a ∈ I, because all the terms of the matrix A have this form or are elements of I. There
exists a matrix B = (bij), the complementary matrix of A, such that BA = AB = dIm. Writing
out the terms in the product BA, we have

∑m
i=1 bhiaij = dδhj , for all h and j. Hence

m∑
j=1

m∑
i=1

bhiaijxj =

m∑
j=1

dδhjxj = dxh,

for every h. However, we may change the order of summation to obtain

m∑
i=1

m∑
j=1

aijxjbhi = dxh.

Given that
∑m

j=1 aijxj = 0, because aij = δij−zij , we obtain that dxh = 0, for all h; this implies
that dM = 0, as required. 2

In a commutative ring R the Jacobson radical J(R) is the intersection of all maximal ideals
of R. An element a ∈ R is quasi-regular if 1− a is a unit.

Proposition 1 The Jacobson radical J(R) is the largest ideal in R consisting entirely of quasi-
regular elements.

proof Let a ∈ J(R). If 1−a is not a unit, then (1−a) is a proper ideal contained in a maximal
ideal M . But then a and 1 − a are both contained in M , which implies that 1 belongs to M ,
which is impossible. Thus J(R) is composed entirely of quasi-regular elements.

1



Now let I be an ideal composed entirely of quasi-regular elements. If a ∈ I \ J(R), then for
some maximal ideal M , a does not belong to M . Since M is maximal, we have I +M = R, so
1 = b+ c, with b ∈ I and c ∈ M . As b is quasi-regular, c = 1− b is a unit and it follows that 1
belongs to M , which is impossible. Hence I ⊂ J(R). This concludes the proof. 2

Theorem 2 (Nakayama's lemma version 2) Let R be a ring, M a �nitely generated R-moduleNakathm2

and I an ideal of R. If I ⊂ J(R) and IM =M , then M = {0}.

proof From Theorem
Nakathm1

1, there is an element a ∈ I such that (1−a)M = 0. As a ∈ J(R), (1−a)
is invertible, hence M = 0. 2

We give a second proof of Theorem
Nakathm2

2:

proof Assume that M 6= {0} and let x1, . . . , xn be generators of M , with n minimal. Then
n > 0 and xi 6= 0, for all i. Since xn ∈M = IM , we may write xn =

∑m
i=1 biyi, with bi ∈ I and

yi ∈ M . Each yi can be expressed in terms of the generators x1, . . . , xn: yi =
∑n

j=1 aijxj , with
aij ∈ R. Hence

xn =
m∑
i=1

bi

 n∑
j=1

aijxj

 =
n∑

j=1

(
m∑
i=1

aijbj

)
xj =

n∑
j=1

cjxj ,

where cj ∈ I. From this we obtain

(1− cn)xn =

n−1∑
j=1

cjxj ,

where 1 − cn is a unit, because I is included in the Jacobson radical. If n > 1, then xn is a
linear combination of the other xi, contradicting the minimality of n. Hence n = 1. But then
(1 − cn)x1 = 0, which implies that x1 = 0, which is again a contradiction. Therefore M = {0}.
2

Here is a �rst application of Nakayama's lemma. A surjective endomorphism of a �nite-
dimensional vector space is always injective. We have an analogous result for a �nitely generated
module over a ring.

Theorem 3 Let R be a ring and M a �nitely generated R-module. If f is a surjective endo-
morphism of M , then f is injective.

proof Let R be a ring, M a �nitely generated R-module and f : M −→ M a surjective
endomorphism. We make M into an R[X]-module by setting P (X) ·m = P (f)(m). M is �nitely
generated over R, hence over R[X]: If m1, . . . ,mk are generators of M over R and m ∈M , then
there exist r1, . . . , rk ∈ R such that m = r1m1+ · · ·+ rkmk. If Pi(X) is the constant polynomial
of value ri, then

P1(X) ·m1 + · · ·+ Pk(X) ·mk = r1m1 + · · ·+ rkmk = m,

so the mi form a set of generators of M over R[X].
Let I = (X) ⊂ R[X]. Then

I ·M = R[X]X ·M = R[f ]f(M) ⊂M.
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However, if m ∈ M , then there exists m′ ∈ M such that f(m′) = m, because f is surjective.
Also, 1 ∈ R[X], so m ∈ R[f ]f(M) and it follows that R[f ]f(M) = M . From Theorem

Nakathm1

1, there
exists Q(X)X ∈ I such that (1 − Q(X)X) ·M = 0, i.e., m = Q(f)f(m), for all m ∈ M . If
f(m) = 0, then

m = Q(f)f(m) = 0,

so f is injective. 2

We now turn to Krull's intersection theorem, where once again we will use Nakayama's lemma.
We need a preliminary result.

Nakalem1 Lemma 1 (Artin-Rees) Let I be an ideal in a noetherian ring R, M a �nitely generated R-
module and N a submodule of M . Then there exists a positive integer c such that, for n ≥ c,

InM ∩N = In−c(IcM ∩N).

proof Consider the set
S = R⊕ I ⊕ I2 ⊕ · · · =

⊕
n≥0

In,

where I0 = R. We recall that in a direct sum S, if (a0, a1, . . .) ∈ S, then all but a �nite number
of the ai are nonzero. We de�ne an addition and a multiplication on S as for polynomials, using
the fact that ImIn ⊂ Im+n. With these operation S is a ring. As R is noetherian, I is �nitely
generated, so we may write I = (r1, . . . , rt) ⊂ R. We de�ne a mapping φ : R[X1, . . . , Xt] −→ S
by

φ(Xe1
1 · · ·X

et
t ) = re11 · · · r

et
t ⊂ Ie

′
t ,

where e′t = max{e1, . . . , et}. The mapping φ is clearly a ring homomorphism. However, φ is
also surjective: An element a ∈ In is a sum of products of the form a1 · · · an, with ai ∈ I.
We may write ai =

∑t
j=1 aijrj , with aij ∈ R, so a1 · · · an is a sum of monomials of the form

brei1 · · · r
et
t , with b ∈ R and e1 + · · · + et = n. As φ(bXe1

1 · · ·X
et
t ) = bre11 · · · r

et
t , there exists

f ∈ R[X1, · · · , Xt] such that φ(f) = a. It now follows easily that φ is surjective, so there is an
isomorphism of R[X1, . . . , Xt]/ ker(φ) onto S. Hence S is noetherian.

We now consider the set A de�ned by

A =M ⊕ IM ⊕ I2M ⊕ · · · =
⊕
n≥0

InM.

We de�ne an addition on A in a natural way and a scalar multiplication by elements of S in
a way analogous to that used to de�ne the multiplication de�ned on S, once again using the
fact that ImIn ⊂ Im+n. With these operations A is an S-module. We claim that A is �nitely
generated: Let m1, . . . ,ms be a generating set of M . If u ∈ InM , then u is a sum of terms of
the form am, where a ∈ In and m ∈M .

As we saw above, the element a is a sum of monomials of the form bre11 · · · r
et
t , with b ∈ R

and e1 + · · · + et = n; also, m = v1m1 + · · · + vsms, with vi ∈ R. Therefore am is a sum of
elements of the form (bre11 · · · r

et
t )vjmj . Collecting terms, we �nd that am can be written in

the form c1m1 + · · · + csms, where ci ∈ In and it follows that a term u ∈ InM has this form.
Any element of A is a �nite sum of elements of this form with di�erent values of n, so the set
m1, . . . ,ms generates A over S, thus A is �nitely generated as claimed.
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Our next step is to consider the subset B =
⊕

n≥0(I
nM ∩N) of A. We claim that B is an

S-submodule of A. It is su�cient to consider the scalar product of a set In with a set ImM ∩N .
We must show that this product is included in B. An element of In is a sum of monomials of
the form bre11 · · · r

et
t , with b ∈ R and e1 + · · · + et = n. As such monomials belong to R and N

is an R-submodule, the scalar product of bre11 · · · r
et
t with an element of ImM ∩N must belong

to B. It follows that B is an S-submodule of A.

Since S is a noetherian ring and A �nitely generated, B must be �nitely generated. Let ξj ,
j = 1, . . . , k, be a set of generators. By decomposing each ξj into its homogeneous parts, we
may assume that each ξj belongs to I

djM ∩N , for some dj . We set c = max{dj}. Suppose now
that x ∈ InM ∩N . There exist u1, . . . , uk ∈ S such that x = u1ξ1 + · · ·+ ukξk. The term ujξj
belongs to InM ∩N = In−dj (IdjM ∩N), so there exists u′j ∈ In−dj and mj ∈ IdjM ∩N such

that ujξj = u′jmj . Now mj = vj,1ξ1 + · · ·+ vj,kξk, with the vj,i ∈ S. Since mj ∈ IdjM ∩N , we

must have mj = aξj , with a ∈ R, and it follows that ujξj = ũjξj , with ũj ∈ In−dj . From this

we deduce that x =
∑k

j=1 ũjξj , with ũj ∈ In−dj and ξj ∈ IdjM ∩N . However,

n− dj = n− c+ c− dj =⇒ In−dj (IdjM ∩N) = In−c(Ic−djIdjM ∩N) = In−c(IcM ∩N)

and it follows that x ∈ In−c(IcM ∩N).

We have established that InM ∩ N ⊂ In−c(IcM ∩ N). The inclusion In−c(IcM ∩ N) ⊂
InM ∩N is trivial, therefore we have the desired equality. 2

Nakacor1 Corollary 1 Let R be a noetherian ring and I, J ideals in R. Then there exists c ∈ N∗ such
that

In ∩ J = In−c(Ic ∩ J),
for n ≥ c.

proof It is su�cient to set M = R in the Artin-Rees lemma
Nakalem1

1. 2

We now aim to prove two versions of Krull's intersection theorem. We will use the corollary
to the Artin-Rees lemma and both versions of Nakayama's lemma.

Theorem 4 Let R be a noetherian integral domain and I a proper ideal in R. Then ∩∞n=1I
n =

(0).

proof Let J = ∩∞n=1I
n. From Corollary

Nakacor1

1 there exists c ∈ N∗ such that

In ∩ J = In−c(Ic ∩ J),

for n ≥ c. Setting n = c+ 1 we obtain

Ic+1 ∩ (∩∞n=1I
n) = I(Ic ∩ (∩∞n=1I

n)),

i.e.,
∩∞n=1I

n = I(∩∞n=1I
n).

As R is noetherian, the ideal J = ∩∞n=1I
n is �nitely generated. From Nakayama's lemma version

1 (Theorem
Nakathm1

1), there exists a ∈ I such that (1 − a)J = (0). As I is a proper ideal, we have
a 6= 1, so 1−a 6= 0. If x ∈ J , then (1−a)x = 0; as R is an integral domain, we must have x = 0.2

We now suppose that the ring R is not necessarily an integral domain but impose another
condition.
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Theorem 5 Let R be a noetherian ring and I an ideal included in the Jacobson radical J(R).
Then ∩∞n=1I

n = (0).

proof We proceed as in the proof of the previous theorem to show that

∩∞n=1I
n = I(∩∞n=1I

n).

We now apply Nakayama's lemma version 2 (Theorem
Nakathm2

2) to obtain J = (0). 2

Corollary 2 Let (R,M) be a noetherian local ring. Then ∩∞n=1M
n = (0).

proof It is su�cient to notice that in this case the Jacobson radical is M . 2

5


