Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells - Archive ouverte HAL
Journal Articles Solar Energy Materials and Solar Cells Year : 2021

Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells

Abstract

Here, the structural, electronic and optical properties of the GaP 1-x Sb x /Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP 1-x Sb x alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP 1-x Sb x alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells.
Fichier principal
Vignette du fichier
Lipin-SolMAt -revised-vf-clean.pdf (666.58 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03031939 , version 1 (30-11-2020)

Identifiers

Cite

Lipin Chen, Mahdi Alqahtani, Christophe Levallois, Antoine Létoublon, Julie Stervinou, et al.. Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells. Solar Energy Materials and Solar Cells, 2021, 221, pp.110888. ⟨10.1016/j.solmat.2020.110888⟩. ⟨hal-03031939⟩
102 View
86 Download

Altmetric

Share

More