Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model
Résumé
We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the method by simulation studies and application to real data.