EXISTENCE RESULTS FOR NONSMOOTH SECOND-ORDER DIFFERENTIAL INCLUSIONS, CONVERGENCE RESULT FOR A NUMERICAL SCHEME AND APPLICATION TO THE MODELING OF INELASTIC COLLISIONS - Archive ouverte HAL
Article Dans Une Revue Confluentes Mathematici Année : 2010

EXISTENCE RESULTS FOR NONSMOOTH SECOND-ORDER DIFFERENTIAL INCLUSIONS, CONVERGENCE RESULT FOR A NUMERICAL SCHEME AND APPLICATION TO THE MODELING OF INELASTIC COLLISIONS

Frederic Bernicot

Résumé

We are interested in the existence results for second-order differential inclusions, involving finite number of unilateral constraints in an abstract framework. These constraints are described by a set-valued operator, more precisely a proximal normal cone to a timedependent set. In order to prove these existence results, we study an extension of the numerical scheme introduced in [10] and prove a convergence result for this scheme.
Fichier principal
Vignette du fichier
BernicotLefebvre_Cvgce_GranulaireSec.pdf (303.6 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03030606 , version 1 (30-11-2020)

Identifiants

Citer

Frederic Bernicot, Aline Lefebvre-Lepot. EXISTENCE RESULTS FOR NONSMOOTH SECOND-ORDER DIFFERENTIAL INCLUSIONS, CONVERGENCE RESULT FOR A NUMERICAL SCHEME AND APPLICATION TO THE MODELING OF INELASTIC COLLISIONS. Confluentes Mathematici, 2010, 02 (04), pp.445-471. ⟨10.1142/S1793744210000247⟩. ⟨hal-03030606⟩
19 Consultations
36 Téléchargements

Altmetric

Partager

More