Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection

Résumé

Most deep learning object detectors are based on the anchor mechanism and resort to the Intersection over Union (IoU) between predefined anchor boxes and ground truth boxes to evaluate the matching quality between anchors and objects. In this paper, we question this use of IoU and propose a new anchor matching criterion guided, during the training phase, by the optimization of both the localization and the classification tasks: the predictions related to one task are used to dynamically assign sample anchors and improve the model on the other task, and vice versa. Despite the simplicity of the proposed method, our experiments with different state-of-the-art deep learning architectures on PASCAL VOC and MS COCO datasets demonstrate the effectiveness and generality of our Mutual Guidance strategy.
Fichier principal
Vignette du fichier
accv2020.pdf (9.96 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03025756 , version 1 (26-11-2020)

Identifiants

Citer

Heng Zhang, Elisa Fromont, Sébastien Lefèvre, Bruno Avignon. Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection. ACCV 2020 - The 15th Asian Conference on Computer Vision, Nov 2020, Kyoto / Virtual, Japan. pp.1-15, ⟨10.1007/978-3-030-69538-5_7⟩. ⟨hal-03025756⟩
99 Consultations
60 Téléchargements

Altmetric

Partager

More