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Abstract. Most deep learning object detectors are based on the anchor
mechanism and resort to the Intersection over Union (IoU) between pre-
defined anchor boxes and ground truth boxes to evaluate the matching
quality between anchors and objects. In this paper, we question this use
of IoU and propose a new anchor matching criterion guided, during the
training phase, by the optimization of both the localization and the clas-
sification tasks: the predictions related to one task are used to dynam-
ically assign sample anchors and improve the model on the other task,
and vice versa. Despite the simplicity of the proposed method, our ex-
periments with different state-of-the-art deep learning architectures on
PASCAL VOC and MS COCO datasets demonstrate the effectiveness
and generality of our Mutual Guidance strategy.

1 Introduction

Object detection is a popular task in computer vision that aims at localizing ob-
jects through bounding boxes and assigning each of them to a predefined class.
Deep learning-based methods largely dominate this research field and most re-
cent methods are based on the anchor mechanism [1-12]. Anchors are predefined
reference boxes of different sizes and aspect ratios uniformly stacked over the
whole image. They help the network to handle object scale and shape variations
by converting the object detection problem into an anchor-wise bounding box
regression and classification problem. Most state-of-the-art anchor-based object
detectors resort to the Intersection over Union (IoU) between the predefined
anchor boxes and the ground truth boxes (called IoUgpnchor in the following)
to assign the sample anchors to an object (positive anchors) or a background
(negative anchors) category. These assigned anchors are then used to minimize
the bounding box regression and classification losses during training.

This IToUgpchor-based anchor matching criterion is reasonable under the as-
sumption that anchor boxes with high ToU,cnor are appropriate for localization
and classification. However, in reality, the ToUg,ychor 1S insensitive to objects’
content/context, thus not “optimal” to be used, as such, for anchor matching.
In Figure 1, we show several examples where ToUgychor does not well reflect the
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Fig. 1. Anchors A and anchors B have the same IoU with ground truth box but different
visual semantic information. The ground truth in each image is marked as dotted-line
box. Better viewed in colour.

matching quality between anchors and objects: anchors A and anchors B have
exactly the same IoUg,pchor but possess very different matching qualities. For
example, on the first line of Figure 1, anchors A covers a more representative
and informative part of the object than anchors B; On the second line, anchors B
contains parts of a nearby object which hinders the prediction on the jockey /left
person.

Deep learning-based object detection involves two sub-tasks: instance local-
ization and classification. Predictions for these two tasks tell us “where” and
“what” objects are on the image respectively. During the training phase, both
tasks are jointly optimized by gradient descent, but the static anchor matching
strategy does not explicitly benefit from the joint resolution of the two tasks,
which may then yield to a task-misalignment problem, i.e., during the evalua-
tion phase, the model might generate predictions with correct classification but
imprecisely localized bounding boxes as well as predictions with precise local-
ization but wrong classification. Both predictions significantly reduce the overall
detection quality.

To address these two limitations of the existing IoU,ypor-based strategy, we
propose a new, adaptive anchor matching criterion guided by the localization and
by the classification tasks mutually, i.e., resorting to the bounding box regression
prediction, we dynamically assign training anchor samples for optimizing classi-
fication and vice versa. In particular, we constrain anchors that are well-localized
to also be well-classified (Localize to Classify), and those well-classified to also be
well-localized (Classify to Localize). These strategies lead to a content/context-
sensitive anchor matching and avoid the task-misalignment problem. Despite the
simplicity of the proposed strategy, Mutual Guidance brings consistent Average
Precision (AP) gains over the traditional static strategy with different deep learn-
ing architectures on PASCAL VOC [13] and MS COCO [14] datasets, especially
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on strict metrics such as AP75. Our method is expected to be more efficient
on applications that require a precise instance localization, e.g., autonomous
driving, robotics, outdoor video surveillance, etc.

The main contributions of our work can be summarized as follows:

— We suggest a new perspective for anchor matching in object detection, i.e.,
assign anchor labels for one task according to the predictions on the other
task and vice versa.

— We visualize the difference of anchor matching and object detection results
between static methods and Mutual Guidance, to explore the reasons of
performance improvements.

The rest of this paper is organized as follows: in Section 2, we discuss some
representative related work in object detection. Section 3 provides implementa-
tion details of the proposed Mutual Guidance. Section 4 compares our dynamic
anchor matching criterion to the traditional static criterion with different deep
learning architectures on different public object detection datasets, and discusses
reasons for the precision improvements. Section 5 brings concluding remarks.

2 Related work

Modern CNN-based object detection methods can be divided into two major
categories: two-stage detectors and single-stage ones. Both categories give simi-
lar performance with a small edge in accuracy for the former and in efficiency for
the latter. Besides, both categories of detectors are massively based on the an-
chor mechanism which usually resorts to ToUgycnor for evaluating the matching
quality between anchors and objects when assigning training labels and comput-
ing the bounding box regression and classification losses for a training example.
Our method aims to improve this anchor matching criterion.

2.1 Anchor-based object detection

Two-stage object detectors. Faster RCNN [1] defines the generic paradigm for
two-stage object detectors: it first generates a sparse set of Regions of Inter-
est (Rols) with a Region Proposal Network (RPN), then classifies these regions
and refines their bounding boxes. The Rols are generated by the anchor mech-
anism. Multiple improvements have been proposed based on this framework:
R-FCN [2] suggests position-sensitive score maps to share almost all compu-
tations on the entire image; FPN [3] uses a top-down architecture and lateral
connections to build high-level semantic feature maps at all scales; PANet [4]
enhances the multi-scale feature fusion by adding bottom-up path augmentation
to introduce accurate localization signals in lower layers; Libra RCNN [5] pro-
poses the Balanced Feature Pyramid to further integrate multi-scale information
into FPN; TridentNet [15] constructs a parallel multi-branch architecture and
adopts a scale-aware training scheme for training object scale specialized detec-
tion branches. Cascade RCNN [6] further extends the two-stage paradigm into a
multi-stage paradigm, where a sequence of detectors are trained stage by stage.
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Single-stage object detectors. SSD [7] and YOLO [16] are the fundamental meth-
ods for single-stage object detection. From this basis, many other works have
been proposed: FSSD [10] aggregates contextual information into the detector
by concatenating features of different scales; RetinaNet [9] proposes the Focal
Loss to tackle the imbalanced classification problem that arises when trying to
separate the actual object to detect from the massive background; RFBNet [11]
proposes Receptive Field Block, which takes the relationship between the size
and the eccentricity of the reception fields into account; RefineDet [17] introduces
an additional stage of refinement for anchor boxes; M2Det [12] stacks multiple
thinned U-shape modules to tackle the so-called appearance-complexity varia-
tions. While these methods introduce novel architectures to improve results for
the object detection task, they all rely on the standard IoUgycpor--based match-
ing. We identify this component as a possible limitation and propose a novel
matching criterion, that could be adapted to any existing deep architecture for
object detection.

2.2 Anchor-free object detection

The idea of anchor-free object detection consists in detecting objects not from
predefined anchors boxes, but directly from particular key-points [18-21] or ob-
ject centres [22-25]. However, these methods do not lead to a substantial accu-
racy advantage compared to anchor-based methods. The main idea of our Mutual
Guidance could also be applied to this class of object detectors, and the exper-
imental results with anchor-free detectors are included in the supplementary
material.

3 Approach

As already sketched in the introduction, in order to train an anchor-based object
detector, the predefined anchors should be assigned as positive (“it is a true
object”) or negative (“it is a part of the background”) according to an evaluation
of the matching between the anchors and the ground truth objects. Then, the
bounding box regression loss is optimized according to the positive anchors, and
the instance classification loss is optimized according to the positive as well as
the negative anchors. When training an anchor-based single-stage object detector
with a static anchor matching strategy, the IoU between predefined anchor boxes
and ground truth boxes (IoUgnchor) is the usual matching criterion. As shown
in the ToUgpchor column of Figure 2, anchors with more than 50% of IoUg,chor
are labelled as “positive”, those with less than 40% of IoUgy,chor are labelled
as “negative”, the rest are “ignored anchors”. Note that at least one anchor
should be assigned as positive, hence if there is no anchor with more than 50%
of IoUgypchor, the anchor with the highest ToU,,chor is considered.

The proposed Mutual Guidance consists of two components: Localize to Clas-
sify and Classify to Localize.
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Fig. 2. [llustration of different anchor matching strategies for the boat image resorting
to ToUanchor (static), ToUregressea (Localize to Classify) and IoUamplifiea (Classify to
Localize). Anchors A-M are predefined anchor boxes around the boat on the left side
image, for simplicity, we only mark the position of the anchor F and the anchor H.

Better viewed in colour.

3.1 Localize to Classify

If an anchor is capable to precisely localize an object, this anchor must cover a
good part of the semantically important area of this object and thus could be
considered as an appropriate positive sample for classification. Drawing on this,
we propose to leverage the IoU between regressed bounding boxes (i.e., the net-
work’s localization predictions) and ground truth boxes (noted IoUregressed) t0
better assign the anchor labels for classification. Inspired by the usual IoU,nchor,
we compare IoUregressed 10 some given thresholds (discussed in the next para-
graph) and then define anchors with ToU,cgresseq greater than a high threshold
as positive samples, and those with IoU,cgressed lower than a low threshold as
negative samples (see JoUyegressed column of Figure 2).

We now discuss a dynamic solution to set the thresholds. A fixed threshold
(e.g., 50% or 40%) does not seem optimal since the network’s localization ability
gradually improves during the training procedure and so does the IoU,cgressed
for each anchor, leading to the assignment of more and more positive anchors
which destabilizes the training. To address this issue, we propose a dynamic
thresholding strategy. Even though the IoUgpchor is not the best choice to accu-
rately indicate the matching quality between anchors and objects, the number
of assigned positive and ignored anchors does reflect the global matching con-
ditions (brought by the size and the aspect ratio of the objects to detect), thus
these numbers could be considered as reference values for our dynamic criterion.
As illustrated in Figure 2, while applying the IoUgpcnor-based anchor matching
strategy with the thresholds being 50% and 40%, the number of positive anchors
(N,) and ignored anchors (NN;) are noted (N, = 6 and N; = 3 for the boat). We
then use these numbers to label the N, highest IoU,¢gresseqd anchors as positive,
and the following V; anchors as ignored. More formally, we exploit the Np-th
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Fig. 3. Hlustration of IoUgmpiifica with different o values (1, 2 or 3). IoUampiifieda =
ToUgnchor when Classif score = 0.

largest IoUyegressed as our positive anchor threshold, and the (N, +N;)-th largest
10U, ¢gressea as our ignored anchor threshold. Using this, our Localize to Classify
anchor matching strategy evolves with the network’s localization capacity and
maintains a consistent number of anchor samples assigned to both categories
(positive/negative) during the whole training procedure.

3.2 Classify to localize

As with the Localize to Classify process, the positive anchor samples in Clas-
sify to Localize are assigned according to the network’s classification predictions
(noted Classif score). Specifically, Classif score is the predicted classification
score for the object category, e.g., the Classif score of Figure 2 indicates the
classification score for the boat category.

Nevertheless, this Classif score is not effective enough to be used directly
for assigning good positive anchors for the bounding box regression optimization.
It is especially true at the beginning of the training process, when the network’s
weights are almost random values and all predicted classification scores are close
to zero. The IoU,cgressed is optimized on the basis of the ToUgpchor, therefore
we have I0U,cgressed > 10Uanchor in most cases (even at the beginning of the
training), and this property helps to avoid such cold start problem and ensures
training stability. Symmetrically to the Localize to Classify strategy, we now
propose a Classify to Localize strategy based on an IoUgmpiificqa defined as:

D

IOUamplified = (IOUanchor) % (1)

where o is a hyper-parameter aiming at adjusting the degree of amplification,
p represents the mentioned Classif score. Its behavior is shown in Figure 3.
The IoUamplifiea is always higher than the JoUqunchor, and the amplification is
proportional to the predicted Classif score. In particular, the amplification is
stronger for smaller o (note that ¢ should be larger than 1), and disappears
when o becomes large.
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Similarly to the Localize to Classify strategy, we apply a dynamic threshold-
ing strategy to keep the number of assigned positive samples for the localization
task and for the classification task consistent, e.g., we assign in Figure 2, the top
6 anchors with the highest ToUgmpiified 88 positive samples. Note that there is
no need for selecting ignored or negative anchors for the localization task since
the background does not have an associated ground truth box.

As discussed in Section 1, ToUgy,cnor is not sensitive to the content or the
context of an object. Our proposed Localize to Classify and Classify to Localize,
however, attempt to adaptively label the anchor samples according to their visual
content and context information. Considering anchor F and anchor H in Figure 2,
one can tell that anchor H is better than anchor F for recognizing this boat, even
with a smaller ToUyy,chor. Using both our strategies, anchor H has been promoted
to positive thanks to its excellent prediction quality on both tasks whereas anchor
F has been labelled as negative even though it has a large ToUgnchor-

3.3 About the task-misalignment problem

Since Localize to Classify and Classify to Localize are independent strategies,
they could possibly assign contradictory labels (e.g, the anchor C in Figure 2
is labelled negative for the classification task but positive for the bounding box
regression task). This happens when one anchor entails a good prediction on one
task and a poor prediction on the other (i.e. they are misaligned predictions).
Dealing with such contradictory labels, as we do with Mutual Guidance, does not
destabilize the training process. On the contrary, it tackles the task-misalignment
problem since the labels for one task is assigned according to the prediction
quality on the other task, and vice versa. This mechanism enforces the network
to generate aligned predictions.

For example, if one anchor is good at classification but poor at localization,
for the localization task, the Mutual Guidance will assign this anchor positive
to encourage this anchor to be good at localization as well; in the same time,
for the classification task, considering its localization prediction is poor, in order
to avoid misaligned predictions, the Mutual Guidance will assign this anchor
negative to encourage this anchor to be classified as “background”. In fact, the
predicted classification score of this mislocalized anchor should be low enough to
be suppressed by the NMS procedure of evaluation phase. If one anchor is good
at localization but poor at classification, its classification label will be assigned
as positive to encourage good predictions on both tasks, however, considering its
classification prediction is poor (i.e., this anchor contains one part of the object
but it is classified as “background”), its localization has no need to be optimized
since this detection will not survive in the NMS procedure of evaluation phase.

If the assigned labels are always the same for both tasks (as done in ToUgpchor-
based method), it cannot be guaranteed that one anchor’s prediction on both
tasks (localization and classification) are good at the same time. The NMS will
only keep detection results with the highest classification score, so we may end
up with keeping predictions with good classification and poor localization for
evaluation, which is harmful for strict metrics such as AP75.
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4 Experiments

4.1 Experimental Setting

Network architecture and parameters. In order to test the generalization perfor-
mance of the proposed method, we implement our method on the single-stage
object detectors FSSD [10], RetinaNet [9] and RFBNet [11] using both ResNet-18
[26] or VGG-16 [27] as backbone networks in our experiments. Note that RFBNet
is not implemented with ResNet-18 as backbone since the two architectures are
not compatible. The backbone networks are pre-trained on ImageNet-1k classifi-
cation dataset [28]. We adopt the Focal Loss [9] and Balanced L1 Loss [5] as our
instance classification and bounding box regression loss functions respectively
for all experiments. The input image resolution is fixed to 320 x 320 pixels for
all experiments (single scale training and evaluation). Unless specified, all other
implementation details are the same as in [11]. Following the results of Figure 3,
we decided to fix our only new hyper-parameter o to 2 for all experiments. o is
used to set the degree of amplification when computing IoUgmpiifiea in Eq. (1).
It needs to be greater than 1 for the exponent to be positive and lower than 3
since this does not bring any amplification as shown in Figure 3.

Datasets and evaluation metrics. Extensive experiments are performed on two
benchmark datasets: PASCAL VOC [13] and MS COCO [14]. PASCAL VOC
dataset has 20 object categories. Similarly to previous works, we utilize the com-
bination of VOC2007 and VOC2012 trainval sets for training, and rely on the
VOC2007 test for evaluation. MS COCO dataset contains 80 classes. Our experi-
ments on this dataset are conducted on the train2017 and val2017 set for training
and evaluation respectively. For all datasets, we use the evaluation metrics in-
troduced in the MS COCO benchmark: the Average Precision (AP) averaged
over 10 IoU thresholds from 0.5 to 0.95, but also AP50, AP75, AP, AP,,, AP,.
AP50 and AP75 measure the average precision for a given IoU threshold (50%
and 75%, respectively). The last three aim at focusing on small (area < 322),
medium (322 < area < 96%) and large (area > 962) objects respectively. Since
the size of the objects greatly varies between MS COCO and PASCAL VOC,
these size-dependent measures are ignored when experimenting with PASCAL
VOC dataset.

4.2 Results

Ezperiments on PASCAL VOC. We evaluate the effectiveness of both compo-
nents (Localize to Classify and Classify to Localize) of our proposed approach
w.r.t. the usual IoUg,ychor-based matching strategy when applied on the same
deep learning architectures. The results obtained on the PASCAL VOC dataset
are given in Table 1. Both proposed anchor matching strategies consistently
boost the performance of the “vanilla” networks and their combination (Mutual
Guidance) leads to the best AP and all other evaluation metrics.
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Model | Matching strategy [ AP AP50 APT5
ToUnchor-based | 50.3% 75.5% 53.7%
FSSD with Localize to Classify| 51.8% 76.1% 55.9%

ResNet-18 backbone| Classify to Localize| 51.0% 76.1% 54.3%
Mutual Guidance |52.1% 76.2% 55.9%
IoUgnchor-based | 54.1% 80.1% 58.3%
FSSD with Localize to Classify| 56.0% 80.3% 60.6%
VGG-16 backbone |Classify to Localize| 54.4% 79.9% 58.5%
Mutual Guidance |56.2% 80.4% 61.4%
ToUgnehor-based | 51.1% 75.8% 54.8%
RetinaNet with Localize to Classify| 53.4% 76.5% 57.2%
ResNet-18 backbone| Classify to Localize| 51.9% 75.9% 55.8%
Mutual Guidance |53.5% 76.9% 57.4%
ToUnchor-based | 55.2% 80.2% 59.6%
RetinaNet with Localize to Classify| 57.4% 81.1% 62.6%
VGG-16 backbone |Classify to Localize| 56.2% 80.1% 61.7%
Mutual Guidance |57.7% 81.1% 62.9%
ToUganchor-based |55.6% 80.9% 59.6%
RFBNet with Localize to Classify| 57.2% 80.9% 61.6%
VGG-16 backbone |Classify to Localize| 55.9% 80.8% 60.2%
Mutual Guidance |57.9% 81.5% 62.6%

Table 1. Comparison of different anchor matching strategies (the usual ToUgnchor-
based, proposed Localize to Classify, Classify to Localize and Mutual Guidance) for
object detection. Experiments are conducted on the PASCAL VOC dataset. The best
score for each architecture is in bold.

In particular, we observe that the improvements are small on AP50 (around
0.5%) but significant on AP75 (around 3%), which means that we obtain more
precise detections. As analysed in Section 3.3, this comes from the task-misalignment
problem faced with the usual static anchor matching methods. This issue leads to
retain well-classified but poorly-localized predictions and suppress well-localized
but poorly-classified predictions, which in turns results in a significant drop of
the AP score at strict IoU thresholds, e.g., AP75. In Mutual Guidance, however,
training labels for one task are dynamically assigned according to the prediction
quality on the other task and vice versa. This connection makes the classification
and localization tasks consistent along all training phases and as such avoids this
task-misalignment problem.

We also notice that Localize to Classify alone brings, for all five architec-
tures, a higher improvement than Classify to Localize alone. We hypothesize
two possible reasons for this: 1) most object detection errors come from wrong
classification instead of imprecise localization, so the classification task is more
difficult than the localization task and thus, there is more room for the improve-
ment on this task; 2) the amplification proposed in Eq. (1) may not be the most
appropriate one to take advantage of the classification task for optimizing the
bounding box regression task.
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Model [Matching strategy] AP AP50 AP75 AP, AP, AP,

FSSD with ToUqunchor-based |26.1% 42.8% 26.7% 8.6% 29.1% 41.0%
ResNet-18 backbone| Mutual Guidance |27.0% 42.9% 28.2% 9.5% 29.7% 43.0%
FSSD with ToUqunchor-based | 31.1% 48.9% 32.7% 13.3% 37.2% 44.7%
VGG-16 backbone | Mutual Guidance |32.0% 49.3% 33.9% 13.7% 37.8% 46.4%
RetinaNet with ToUgnchor-based | 27.8% 44.5% 28.6% 10.4% 31.6% 42.6%
ResNet-18 backbone| Mutual Guidance |28.7% 44.9% 29.9% 11.0% 32.2% 44.8%
RetinaNet with ToUgnehor-based | 32.3% 50.3% 34.0% 14.3% 37.9% 46.7%
VGG-16 backbone | Mutual Guidance |33.6% 50.8% 35.7% 15.4% 38.9% 48.8%
RFBNet with ToUqunchor-based | 33.4% 51.6% 35.1% 14.2% 38.3% 49.1%
VGG-16 backbone | Mutual Guidance |34.6% 52.0% 36.8% 15.8% 39.0% 51.1%

Table 2. AP performance of different architectures for object detection on MS COCO
dataset using 2 different anchor matching strategies: the usual IoUgpchor-based one
and our complete approach marked as Mutual Guidance. The best score for each ar-
chitecture is in bold.

Ezxperiments on MS COCO. We then conduct experiments on the more difficult
MS COCO [14] dataset and report our results in Table 2. Note that according to
the scale range defined by MS COCO, APs of small, medium and large objects
are listed. In this dataset also, our Mutual Guidance strategy consistently brings
some performance gains compared to the IoU,nchor-based baselines. We notice
that our AP gains on large objects is significant (around 2%). This is because
larger objects generally have more matched positive anchors, which offers more
room for improvements to our method. Since the Mutual guidance strategy only
involves the training phase, and since there is no difference between IoUgpchor-
based and our method during the evaluation phase, these improvements can be
considered cost-free.

4.3 Qualitative analysis

Label assignment visualization. Here, we would like to explore the reasons for
the performance improvements by visualizing the difference in the label assign-
ment between the IoUy,,qhor-based strategy and the Mutual Guidance strategy
during training. Some examples are shown in Figure 4. White dotted-line boxes
represent ground truth boxes; Red anchor boxes are assigned as positive by
I0Uypchor-based strategy, while considered as negative or ignored by Localize to
Classify (the top two lines in Figure 4) or Classify to Localize (the bottom two
lines in Figure 4); Green anchor boxes are assigned as positive by Localize to
Classify but negative or ignored by IoUgychor-based; Yellow anchor boxes are
assigned as positive by Classify to Localize but negative or ignored by IoUgpchor-
based. From these examples, we can conclude that the ToU,,chor-based strategy
only assigns the “positive” label to anchors with sufficient IoU with the ground
truth box, regardless of their content/context, whereas our proposed Localize to
Classify and Localize to Classify strategies dynamically assign “positive” labels
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Fig. 4. Visualization of the difference in the label assignment during training phase
(images are resized to 320 x 320 pixels). Red, yellow and green anchor boxes are posi-
tive anchors assigned by IoUgnchor-based, Localize to Classify and Classify to Localize
respectively. Zoom in to see details.

to anchors covering semantic discriminant parts of the object (e.g., upper body
of a person, main body of animals), and assign “negative” labels to anchors with
complex background, occluded parts, or anchors containing nearby objects. We
believe that our proposed instance-adaptive strategies make the label assignment
more reasonable, which is the main reason for performance increase.

Detection results visualization. Figure 5 illustrates on a few images from the
PASCAL VOC dataset the different behaviours shown by our Mutual Guidance
method and the baseline anchor matching strategy. As analysed in Section 3.3,
we can find misaligned predictions (good at classification but poor at localiza-
tion) from IoUgypchor-based anchor matching strategy. As shown in the figure,
our method gives better results when different objects are close to each other
in the image, e.g. “man riding a horse” or “man riding a bike”. With the usual
T0oUgpchor-based anchor matching strategy, the instance localization and classi-
fication tasks are optimized independently of each other. Hence, it is possible
that, during the evaluation phase, the classification prediction relies on one ob-
ject whereas the bounding box regression targets the other object. However, such
a problem is rarer with the Mutual Guidance strategy. Apparently, our anchor
matching strategies introduce interactions between both tasks and makes the
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Fig. 5. Examples of detection results using an IoUgnchor-based anchor matching strat-
egy (odd lines) and our proposed Mutual Guidance one (even lines). The results are
given for all images after applying a Non-Maximum Suppression process with a IoU
threshold of 50%. Zoom in to see details.
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predictions of localization and classification aligned, which substantially elimi-
nated such false positive predictions.

5 Conclusion

In this paper, we question the use of the IoU between predefined anchor boxes
and ground truth boxes as a good criterion for anchor matching in object de-
tection and study the interdependence of the two sub-tasks (i.e. localization and
classification) involved in the detection process. We propose a Mutual Guidance
mechanism, which provides an adaptive matching between anchors and objects
by assigning anchor labels for one task according to the prediction quality on
the other task and vice versa. We assess our method on different architectures
and different public datasets and compare it with the traditional static anchor
matching strategy. Reported results show the effectiveness and generality of this
Mutual Guidance mechanism in object detection.
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