Reducibility of $n$-ary Semigroups : from Quasitriviality Towards Idempotency - Archive ouverte HAL
Article Dans Une Revue Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Année : 2022

Reducibility of $n$-ary Semigroups : from Quasitriviality Towards Idempotency

Résumé

Let $X$ be a nonempty set. Denote by $\mathcal{F}^n_k$ the class of associative operations $F\colon X^n\to X$ satisfying the condition $F(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}$ whenever at least $k$ of the elements $x_1,\ldots,x_n$ are equal to each other. The elements of $\mathcal{F}^n_1$ are said to be quasitrivial and those of $\mathcal{F}^n_n$ are said to be idempotent. We show that $\mathcal{F}^n_1=\cdots =\mathcal{F}^n_{n-2}\varsubsetneq\mathcal{F}^n_{n-1}\varsubsetneq\mathcal{F}^n_n$. The class $\mathcal{F}^n_1$ was recently characterized by Couceiro and Devillet, who showed that its elements are reducible to binary associative operations. However, some elements of $\mathcal{F}^n_n$ are not reducible. In this paper, we characterize the class $\mathcal{F}^n_{n-1}\setminus\mathcal{F}^n_1$ and show that its elements are reducible. In particular, we show that each of these elements is an extension of an $n$-ary Abelian group operation whose exponent divides $n-1$.
Fichier principal
Vignette du fichier
ReducibilityNarySemigroups_FinRev-16-06.pdf (305.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03023830 , version 1 (25-11-2020)

Identifiants

Citer

Miguel Couceiro, Jimmy Devillet, Jean-Luc Marichal, Pierre Mathonet. Reducibility of $n$-ary Semigroups : from Quasitriviality Towards Idempotency. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 (1), pp.149-166. ⟨10.1007/s13366-020-00551-2⟩. ⟨hal-03023830⟩
109 Consultations
86 Téléchargements

Altmetric

Partager

More