Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization

Résumé

The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic Path-Integrated Differential EstimatoR EM (SPIDER-EM) and derive complexity bounds for this novel algorithm, designed to solve smooth nonconvex finite-sum optimization problems. We show that it reaches the same state of the art complexity bounds as SPIDER-EM; and provide conditions for a linear rate of convergence. Numerical results support our findings.
Fichier principal
Vignette du fichier
GeomSPIDEREM_HAL.pdf (677.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03021394 , version 1 (24-11-2020)
hal-03021394 , version 2 (08-02-2021)

Identifiants

Citer

Gersende Fort, Eric Moulines, Hoi-To Wai. Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2021, Toronto, Canada. pp.3135-3139, ⟨10.1109/ICASSP39728.2021.9414271⟩. ⟨hal-03021394v2⟩
265 Consultations
144 Téléchargements

Altmetric

Partager

More