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ABSTRACT

The Expectation Maximization (EM) algorithm is a key reference for
inference in latent variable models; unfortunately, its computational
cost is prohibitive in the large scale learning setting. In this paper,
we propose an extension of the Stochastic Path-Integrated Differen-
tial EstimatoR EM (SPIDER-EM) and derive complexity bounds for
this novel algorithm, designed to solve smooth nonconvex finite-sum
optimization problems. We show that it reaches the same state of the
art complexity bounds as SPIDER-EM; and provide conditions for a
linear rate of convergence. Numerical results support our findings.

Index Terms— Large scale learning, Latent variable analy-
sis, Expectation Maximization, Nonconvex stochastic optimization,
Variance reduction.

1. INTRODUCTION

Intelligent processing of large data sets and efficient learning of high-
dimensional models require new optimization algorithms designed
to be robust to big data and complex models era (see e.g. [1–3]).
This paper is concerned with stochastic optimization of a nonconvex
finite-sum smooth objective function

Argminθ∈Θ F (θ), F (θ)
def
=

1

n

n∑
i=1

Li(θ) + R(θ) , (1)

when Θ ⊆ Rd and F cannot be explicitly evaluated (nor its gradi-
ent). Many statistical learning problems can be cast into this frame-
work, where n is the number of observations or examples, Li is a
loss function associated to example #i (most often, a negative log-
likelihood), and R is a penalty term promoting sparsity, regularity,
etc. Empirical risk minimization in machine learning is a matter for
(1). Intractability of F (θ) might come from two sources. The first,
referred to as large scale learning setting, is that the number n is very
large so that the computations involving a sum over n terms should
be either simply avoided or sparingly used during the run of the op-
timization algorithm (see e.g. [4] for an introduction to the bridge
between large scale learning and stochastic approximation; see [5,6]
for applications to training of deep neural networks for signal and
image processing). The second is due to the presence of latent vari-
ables: for any i, the function Li is a (high-dimensional) integral over
latent variables. Such a latent variable context is a classical statisti-
cal modeling: for example as a tool for solving inference in mixture
models [7], for the definition of mixed models capturing variability

Part of this work is funded by the Fondation Simone and Cino Del Duca
under the program OpSiMorE

among examples [8] or for modeling hidden and/or missing vari-
ables (see e.g. applications in text modeling through latent Dirichlet
allocation [9], in audio source separation [10, 11], in hyper-spectral
imaging [12]).

In this contribution, we address the two levels of intractability in
the case Li is of the form

Li(θ)
def
= − log

∫
Z

hi(z) exp (〈si(z), φ(θ)〉)µ(dz) . (2)

This setting in particular covers the case when
∑n
i=1 Li(θ) is the

negated log-likelihood of the observations (Y1, · · · , Yn), the pairs
observation/latent variable {(Yi, Zi), i ≤ n} are independent, and
the distribution of the latent variable given the observation Yi,
given by z 7→ hi(z) exp (〈si(z), φ(θ)〉)µ(dz) up to a multiplica-
tive constant, is from the curved exponential family. Gaussian
mixture models are typical examples, as well as mixtures of dis-
tributions from the curved exponential family. In the framework
(1)-(2), a Majorize-Minimization approach through the Expectation-
Maximization (EM) algorithm [13] is standard; unfortunately, the
computational cost of the batch EM can be prohibitive in the large
scale learning setting. Different strategies were proposed to address
this issue [14–18]: they combine mini-batches processing, Stochas-
tic Approximation (SA) techniques (see e.g. [19, 20]) and variance
reduction methods.

The first contribution of this paper is to provide a novel al-
gorithm, the generalized Stochastic Path-Integrated Differential
EstimatoR EM (g-SPIDER-EM), which is among the variance re-
duced stochastic EM methods for nonconvex finite-sum optimization
of the form (1)-(2); the generalizations allow a reduced computa-
tional cost without altering the convergence properties. The second
contribution is the proof of complexity bounds, that is the num-
ber of parameter updates (M-step) and the number of conditional
expectations evaluations (E-step), in order to reach ε-approximate
stationary points; these bounds are derived for a specific form of
g-SPIDER-EM: we show that the complexity bounds are the same
as those of SPIDER-EM, bounds which are state of the art ones and
overpass all the previous ones. Linear convergence rates are proved
under a Polyak-Łojasiewicz condition. Finally, numerical results
support our findings and provide insights on how to implement
g-SPIDER-EM in order to inherit the properties of SPIDER-EM
while reducing the computational cost.

Notations For a, b ∈ Rq , 〈a, b〉 is the scalar product, and ‖·‖ the
associated norm. For a matrix A, AT is its transpose. For a positive
integer n, set [n]?

def
= {1, · · · , n} and [n]

def
= {0, · · · , n}. ∇f

denotes the gradient of a differentiable function f . The minimum of
a and b is denoted by a ∧ b. Finally, we use standard big O notation



to leave out constants. For a random variable U and/or a filtration
F , σ(U,F) denotes the sigma algebra generated by U and F .

2. EM-BASED METHODS IN THE EXPECTATION SPACE

We begin by formulating the model assumptions:

A1. Θ ⊆ Rd is a convex set. (Z,Z) is a measurable space and
µ is a σ-finite positive measure on Z . The functions R : Θ → R,
φ : Θ → Rq , si : Z → Rq , hi : Z → R+ for all i ∈ [n]? are
measurable. For any θ ∈ Θ and i ∈ [n]?, |Li(θ)| <∞.

For any θ ∈ Θ and i ∈ [n]?, define the posterior density of the
latent variable Zi given the observation Yi:

z 7→ pi(z; θ)
def
= hi(z) exp (〈si(z), φ(θ)〉+ Li(θ)) , (3)

note that the dependence upon yi follows through the index i in the
above. Set

s̄i(θ)
def
=

∫
Z

si(z) pi(z; θ)µ(dz), s̄(θ)
def
= n−1

n∑
i=1

s̄i(θ) . (4)

A2. The expectations s̄i(θ) are well defined for all θ ∈ Θ and i ∈
[n]?. For any s ∈ Rq , Argminθ∈Θ (−〈s, φ(θ)〉+ R(θ)) is a (non
empty) singleton denoted by {T(s)}.

EM is an iterative algorithm: given a current value τk ∈ Θ,
the next value is τk+1 ← T ◦ s̄(τk). It combines an expectation
step which boils down to the computation of s̄(τk), an expectation
under p(·; τk); and a maximization step through the computation of
the map T. Equivalently, by using T which maps Rq to Θ, it can be
described in the expectation space (see [21]): given the current value
s̄k ∈ s̄(Θ), the next value is s̄k+1 ← s̄ ◦ T(s̄k). In this paper, we
see EM as an iterative algorithm operating in the expectation space.
In that case, the fixed points of the EM operator s̄ ◦ T are the roots
of the function h

h(s)
def
= s̄ ◦ T(s)− s . (5)

EM possesses a Lyapunov function: in the parameter space, it is
the objective function F where by definition of the EM sequence,
it holds F (τk+1) ≤ F (τk); in the expectation space, it is W

def
=

F ◦T, and W(s̄k+1) ≤W(s̄k) holds. In order to derive complexity
bounds, regularity assumptions are required on W:

A 3. The functions φ and R are continuously differentiable on
Θv , where Θv is an open neighborhood of Θ when Θ is not
open and Θv def

= Θ otherwise. T is continuously differentiable
on Rq . The function F is continuously differentiable on Θv and
for any θ ∈ Θ, ∇F (θ) = −∇φ(θ)T s̄(θ) + ∇R(θ). For any

s ∈ Rq , B(s)
def
= ∇(φ ◦ T)(s) is a symmetric q × q matrix and

there exist 0 < vmin ≤ vmax < ∞ such that for all s ∈ Rq ,
the spectrum of B(s) is in [vmin, vmax]. For any i ∈ [n]?,
s̄i ◦ T is globally Lipschitz on Rq with constant Li. The function
s 7→ ∇(F ◦ T)(s) = −B(s) (s̄ ◦ T (s)− s) is globally Lipschitz
on Rq with constant LẆ.

A3 implies that W has globally Lipschitz gradient and ∇W (s) =
−B(s)h(s) for some positive definite matrix B(s) (see e.g. [21,
Lemma 2]; see also [22, Propositions 1 and 2]). Note that this im-
plies that∇W (s?) = 0 iff h(s?) = 0.

Unfortunately, in the large scale learning setting (when n� 1),
EM can not be easily applied since each iteration involves n con-
ditional expectations evaluations through s̄ = n−1∑n

i=1 s̄i. Incre-
mental EM techniques have been proposed to address this issue: the

most straightforward approach amounts to use a SA scheme with
mean field h since. Upon noting that h(s) = E [s̄I ◦ T(s)] − s
where I is a uniform random variable (r.v.) on [n]?, the fixed points
of the EM operator s̄ ◦ T are those of the SA scheme

Ŝk+1 = Ŝk + γk+1

(
b−1

∑
i∈Bk+1

s̄i ◦ T(Ŝk)− Ŝk
)

(6)

where {γk, k ≥ 0} is a deterministic positive step size sequence, and
Bk+1 is sampled from [n]? independently from the past of the algo-
rithm. This forms the basis of Online-EM proposed by [15] (see
also [23]). Variance reduced versions were also proposed and stud-
ied: Incremental EM (i-EM) [14, 24], Stochastic EM with variance
reduction (sEM-vr) [16], Fast Incremental EM [17, 22] (FIEM)
and more recently, Stochastic Path-Integrated Differential Estima-
toR EM (SPIDER-EM) [18].

As shown in [22, section 2.3], these algorithms can be seen as
a combination of SA with control variate: upon noting that h(s) =
h(s) + E[U ] for any r.v. U such that E[U ] = 0, control variates
within SA procedures replace (6) with

Ŝk+1 = Ŝk + γk+1

(
b−1

∑
i∈Bk+1

s̄i ◦ T(Ŝk) + Uk+1 − Ŝk
)

for a choice of Uk+1 such that the new algorithm has better proper-
ties (for example, in terms of complexity - see the end of Section 3).

Lastly, we remark that A1–A3 are common assumptions (see
e.g. [18] and [22] and references therein).

3. THE GEOM-SPIDER-EM ALGORITHM

Data: kout ∈ N?; Ŝinit ∈ Rq; ξt ∈ N? for t ∈ [kout]
?;

γt,0 ≥ 0, γt,k > 0 for t ∈ [kout]
?, k ∈ [ξt]

?.
Result: The g-SPIDER-EM sequence: {Ŝt,k}

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit ;
2 S1,0 = s̄ ◦ T(Ŝ1,−1) + E1 ;
3 for t = 1, · · · , kout do
4 for k = 0, . . . , ξt − 1 do
5 Sample a mini batch Bt,k+1 of size b from [n]? ;
6 St,k+1 = St,k +

b−1∑
i∈Bt,k+1

(
s̄i ◦ T(Ŝt,k)− s̄i ◦ T(Ŝt,k−1)

)
;

7 Ŝt,k+1 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)
8 Ŝt+1,−1 = Ŝt,ξt ;
9 St+1,0 = s̄ ◦ T(Ŝt+1,−1) + Et+1 ;

10 Ŝt+1,0 = Ŝt+1,−1 + γt+1,0

(
St+1,0 − Ŝt+1,−1

)
Algorithm 1: The g-SPIDER-EM algorithm. The Et’s are in-
troduced as a perturbation to the computation of s̄◦T(Ŝt,−1);
they can be null.

The algorithm generalized Stochastic Path-Integrated Differ-
ential EstimatoR Expectation Maximization (g-SPIDER-EM) de-
scribed by Algorithm 1 uses a new strategy when defining the
approximation of s̄ ◦T(s) at each iteration. It is composed of nested
loops: kout outer loops, each of them formed with a possibly random
number of inner loops. Within the tth outer loop, g-SPIDER-EM
mimics the identity s̄◦T(Ŝt,k) = s̄◦T(Ŝt,k−1)+{s̄◦T(Ŝt,k)− s̄◦
T(Ŝt,k−1)}. More precisely, at iteration k + 1, the approximation



St,k+1 of the full sum s̄ ◦ T(Ŝt,k) is the sum of the current approx-
imation St,k and of a Monte Carlo approximation of the difference
(see Lines 5, 6, in Algorithm 1); the examples i in Bt,k+1 used in the
approximation of s̄◦T(Ŝt,k) and those used for the approximation of
s̄ ◦ T(Ŝt,k−1) are the same - which make the approximations corre-
lated and favor a variance reduction when plugged in the SA update
(Line 7). Bt,k+1 is sampled with or without replacement; even when
Bt,k+1 collects independent examples sampled uniformly from [n]?,
we have E [St,k+1|Ft,k]− s̄◦T(Ŝt,k) = St,k− s̄◦T(Ŝt,k−1) where
Ft,k is the sigma-field collecting the randomness up to the end of
the outer loop #t and inner loop #k: the approximation St,k+1

of s̄ ◦ T(Ŝt,k) is biased - a property which makes the theoretical
analysis of the algorithm challenging. This approximation is re-
set (see Lines 2,9) at the end of an outer loop: in the ”standard”
SPIDER-EM, St,0 = s̄ ◦ T(Ŝt,−1) is computed, but this ”refresh”
can be only partial, by computing an update on a (large) batch B̃t,0
(size b̃t) of observations: St,0 = b̃−1

t

∑
i∈B̃t,0 s̄i ◦ T(Ŝt,−1). Such

a reset starts a so-called epoch (see Line 3). The number of inner
loops ξt at epoch #t can be deterministic; or random, such as a
uniform distribution on [kin]? or a geometric distribution, and drawn
prior the run of the algorithm.
Comparing g-SPIDER-EM with SPIDER-EM [18], we notice that
(i) the former allows a perturbation Et when initializing St,0, which
is important for computational cost reduction; (ii) g-SPIDER-EM
considers epochs with time-varying length ξt which covers situations
when it is random and chosen independently of the other sources
of randomness (the errors Et, the mini batches Bt,k+1). Here-
after, we provide an original analysis of an g-SPIDER-EM, namely
Geom-SPIDER-EM which corresponds to the case ξt ← Ξt, Ξt be-
ing a geometric r.v. on N? with success probability 1− ρt ∈ (0, 1):
P(Ξt = k) = (1 − ρt)ρ

k−1
t for k ≥ 1 (hereafter, we will write

Ξt ∼ G?(1 − ρt)). Since Ξt is also the first success distribution
in a sequence of independent Bernoulli trials, the geometric length
could be replaced with: (i) at each iteration k of epoch t, sample a
Bernoulli r.v. with a probability of success (1 − ρt); (ii) when the
coin comes up head, start a new epoch (see [25,26] for similar ideas
on stochastic gradient algorithms).
Let us establish complexity bounds for Geom-SPIDER-EM. We
analyze a randomized terminating iteration Ξ? [27] and discuss
how to choose kout, b and ξ1, · · · , ξkout as a function of the
batch size n and an accuracy ε > 0 to reach ε-approximate sta-
tionarity i.e. E[‖h(ŜΞ?)‖2] ≤ ε. To this end, we endow the

probability space (Ω,A,P) with the sigma-fields F1,0
def
= σ(E1),

Ft,0
def
= σ(Ft−1,ξt , Et) for t ≥ 2, and Ft,k+1

def
= σ(Ft,k,Bt,k+1)

for t ∈ [kout]
?, k ∈ [ξt − 1]. For a r.v. Ξt ∼ G?(1 − ρt),

set Et[φ(Ξt)|Ft,0]
def
= (1 − ρt)

∑
k≥1 ρ

k−1
t E[φ(k)|Ft,0] for any

bounded measurable function φ.

Theorem 1. Assume A1 to A3. For any t ∈ [kout]
?, let ρt ∈ (0, 1)

and Ξt ∼ G?(1 − ρt). Run Algorithm 1 with γt,k+1 = γt > 0,
γ1,0 = 0 and ξt ← Ξt for any t ∈ [kout]

?, k ≥ 0. Then, for any
t ∈ [kout]

?,

vminγt
2(1− ρt)

Et
[
‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≤W(Ŝt,0)− Et

[
W(Ŝt,Ξt)|Ft,0

]
+

vmaxγt
2(1− ρt)

‖Et‖2

+
vmaxγtγ

2
t,0

2(1− ρt)
L2

b
‖∆Ŝt,0‖2 +Nt Et

[
‖∆Ŝt,Ξ‖2|Ft,0

]
;

where ∆Ŝt,ξ
def
= St,ξ − Ŝt,ξ−1, L2 def

= n−1∑n
i=1 Li, and

Nt
def
= − γt

2(1− ρt)

(
vmin − γtLẆ −

vmaxL
2ρt

(1− ρt)b
γ2
t

)
.

Theorem 1 is the key result from which our conclusions are drawn;
its proof is adapted from [18, section 8] (also see [28, Theorem 10]).

Let us discuss the rate of convergence and the complexity of
Geom-SPIDER-EM in the case: for any t ∈ [kout]

?, the mean num-
ber of inner loops is (1− ρt)−1 = kin, γt,0 = 0 and γt = α/L for
α > 0 satisfying

vmin − α
LẆ

L
− α2vmax

kin

b

(
1− 1

kin

)
> 0 .

Linear rate. When Ξ ∼ G?(1− ρ), we have (see [28, Lemma 1])

ρE [DΞ] ≤ ρE [DΞ] + (1− ρ)D0 = E [DΞ−1] (7)

for any positive sequence {Dk, k ≥ 0}; Theorem 1 implies

Et
[
‖h(Ŝt,Ξt)‖

2|Ft,0
]
≤ 2L

vminα(kin − 1)

(
W(Ŝt,0)−min W

)
+
vmax

vmin

kin

kin − 1
‖Et‖2 ; (8)

see [28, Corollary 11]. Hence, when ‖Et‖ = 0 and W satisfies a
Polyak-Łojasiewicz condition [29], i.e.

∃τ > 0, ∀s ∈ Rq, W(s)−min W ≤ τ‖∇W(s)‖2 (9)

then (8) yields

Ht
def
= Et

[
‖h(Ŝt,Ξt)‖

2|Ft,0
]
≤ 2Lτv2

max

vminα(kin − 1)
‖h(Ŝt−1,Ξt−1)‖2 ,

thus establishing a linear rate of the algorithm along the path
{Ŝt,Ξt , t ∈ [kout]

?} as soon as kin is large enough:

E [Ht] ≤
(

2Lτv2
max

vminα(kin − 1)

)t
‖h(Ŝinit)‖2.

Even if the Polyak-Łojasiewicz condition (9) is quite restrictive,
the above discussion gives the intuition of the lock-in phenomenon
which often happens at convergence: a linear rate of convergence is
observed when the path is trapped in a neighborhood of its limiting
point, which may be the consequence that locally, the Polyak-
Łojasiewicz condition holds (see figure 1 in Section 4).
Complexity for ε-approximate stationarity. From Theorem 1,
Eq. (7) and Ŝt,Ξt = Ŝt+1,0 (here γt,0 = 0 and Et = 0), it holds

vminα(kin − 1)

2L
E [Ht] ≤ E

[
W(Ŝt,0)−W(Ŝt+1,0)

]
.

Therefore,

1

kout

kout∑
t=1

E [Ht] ≤
2L
(

W(Ŝinit)−min W
)

vminα(kin − 1)kout
. (10)

Eq. (10) establishes that in order to obtain an ε-approximate sta-
tionary point, it is sufficient to stop the algorithm at the end of the
epoch #T , where T is sampled uniformly from [kout]

? with kout =

O(L/(εαkin)) - and return ŜT,ΞT . To do such, the mean number

of conditional expectations evaluations is KCE
def
= n + nkout +



2bkinkout; and the mean number of optimization steps is KOpt
def
=

kout + kinkout. By choosing kin = O(
√
n) and kin/b = O(1), we

have KCE = O(n+ L
√
n/(εα)) and KOpt = O(L/(εα)). Similar

randomized terminating strategies were proposed in the literature:
their optimal complexity in terms of conditional expectations eval-
uations is O(ε−2) for Online-EM [15], O(ε−1n) for i-EM [14],
O(ε−1n2/3) for sEM-vr [16,17],O({ε−1n2/3}∧{ε−3/2√n}) for
FIEM [17,22] and O(ε−1√n) for SPIDER-EM - see [18, section 6]
for a comparison of the complexities KCE and Kopt of these incre-
mental EM algorithms. Hence, Geom-SPIDER-EM has the same
complexity bounds as SPIDER-EM, and they are optimal among the
class of incremental EM algorithms.

4. NUMERICAL ILLUSTRATION

We perform experiments on the MNIST dataset, which consists of
n = 6×104 images of handwritten digits, each with 784 pixels. We
pre-process the datas as detailed in [22, section 5]: 67 uninformative
pixels are removed from each image, then a principal component
analysis is applied to further reduce the dimension; we keep the 20
principal components of each observation. The learning problem
consists in fitting a Gaussian mixture model with g = 12 compo-
nents having the same covariance matrix: θ collects the weights of
the mixture, the expectations of the components (i.e. g vectors in
R20) and a 20 × 20 covariance matrix; F is the negative normal-
ized log-likelihood (no penalty term). All the algorithms start from
Ŝinit = s̄◦T(θinit) such that−F (θinit) = −58.3, and their first two
epochs are Online-EM iterations. The first epoch with a variance
reduction technique is the 3rd; on Fig. 1, the plot starts at epoch #2.

Geom-SPIDER-EM is run with a constant step size γt,k = 0.01
(and γt,0 = 0); kout = 148 epochs (which are preceded with
2 epochs of Online-EM); a mini batch size b =

√
n. Differ-

ent strategies are considered for the initialization St,0 and the pa-
rameter of the geometric r.v. Ξt. In full-geom, kin =

√
n/2

so that the mean total number of conditional expectations evalua-
tions per outer loop is 2bkin = n; and Et = 0 which means that
St,0 requires the computation of the full sum s̄ over n terms. In
half-geom, kin is defined as in full-geom, but for all t ∈
[kout]

?, St,0 = (2/n)
∑
i∈B̃t,0 s̄i ◦ T(Ŝt,−1) where Bt,0 is of car-

dinality n/2; therefore Et 6= 0. In quad-geom, a quadratic growth
is considered both for the mean of the geometric random variables:
E [Ξt] = min(n,max(20t2, n/50))/(2b); and for the size of the
mini batch when computing St,0: St,0 = b̃−1

t

∑
i∈B̃t s̄i ◦ T(Ŝt,−1)

with b̃t = min(n,max(20t2, n/50)). The g-SPIDER-EM with a
constant number of inner loops ξt = kin = n/(2b) is also run for
comparison: different strategies for St,0 are considered, the same as
above (it corresponds to full-ctt, half-ctt and quad-ctt
on the plots). Finally, in order to illustrate the benefit of the variance
reduction, a pure Online-EM is run for 150 epochs, one epoch cor-
responding to

√
n updates of the statistics Ŝ, each of them requiring

a mini batch Bk+1 of size
√
n (see Eq.(6)).

The algorithms are compared through an estimation of the quan-
tile of order 0.5 of ‖h(Ŝt,Ξt)‖2 over 30 independent realizations. It
is plotted versus the number of epochs t in Fig. 1 and the number
of conditional expectations (CE) evaluations in Fig. 2. They are also
compared through the objective function F along the path; the mean
value over 30 independent paths is displayed versus the number of
CE, see Fig. 3.

We first observe that Online-EM has a poor convergence rate,
thus justifying the interest of variance reduction techniques as shown
in Fig. 1. Having a persistent bias along iterations when defining St,0
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Fig. 1. Quantile 0.5 of ‖h(Ŝt,Ξt)‖2 vs the number of epochs

0 2 4 6 8 10 12

10
6

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

half-ctt

full-ctt

quad-ctt

half-geom

full-geom

quad-geom

Fig. 2. Quantile 0.5 of ‖h(Ŝt,Ξt)‖2 vs the number of CE evaluations

i.e. considering b̃t 6= n and therefore Et 6= 0, is also a bad strategy
as seen in Fig. 1, 2 for half-ctt and half-geom. For the four
other g-SPIDER-EM strategies, we observe a linear convergence
rate in Fig. 1, 2. The best strategy, both in terms of CE evaluations
and in terms of efficiency given a number of epochs, is quad-ctt:
a constant and deterministic number of inner loops ξt combined with
an increasing accuracy when computing St,0; therefore, during the
first iterations, it is better to reduce the computational cost of the
algorithm by considering b̃t � n. When Et = 0 (i.e. b̃t = n so
the computational cost of St,0 is maximal), it is possible to reduce
the total CE computational cost of the algorithm by considering a
random number of inner loops (see full-geom and full-ctt
on Fig. 1, 2). Finally, the strategy which consists in increasing both
b̃t and the number of inner loops, does not look the best one (see
quad-ctt and quad-geom on Fig. 1 to Fig. 3).
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1. PROOF OF THEOREM 1

Let {Et, t ∈ [kout]
?} and {Bt,k+1, t ∈ [kout]

?, k ∈ [ξt − 1]} be
random variables defined on the probability space (Ω,A,P). Define

the filtrations F1,0
def
= σ(E1), Ft,0

def
= σ(Ft−1,ξt , Et) for t ≥ 2, and

Ft,k+1
def
= σ(Ft,k,Bt,k+1) for t ∈ [kout]

?, k ∈ [ξt − 1].
For ρt ∈ (0, 1), set

Et[φ(Ξt)|Ft,0]
def
= (1− ρt)

∑
k≥1

ρk−1
t E[φ(k)|Ft,0] ,

for any measurable positive function φ.

A1. Θ ⊆ Rd is a convex set. (Z,Z) is a measurable space and
µ is a σ-finite positive measure on Z . The functions R : Θ → R,
φ : Θ → Rq , si : Z → Rq , hi : Z → R+ for all i ∈ [n]? are
measurable. For any θ ∈ Θ and i ∈ [n]?, |Li(θ)| <∞.

A2. The expectations s̄i(θ) are well defined for all θ ∈ Θ and i ∈
[n]?. For any s ∈ Rq , Argminθ∈Θ (−〈s, φ(θ)〉+ R(θ)) is a (non
empty) singleton denoted by {T(s)}.

A 3. The functions φ and R are continuously differentiable on
Θv , where Θv is an open neighborhood of Θ when Θ is not
open and Θv def

= Θ otherwise. T is continuously differentiable
on Rq . The function F is continuously differentiable on Θv and
for any θ ∈ Θ, ∇F (θ) = −∇φ(θ)T s̄(θ) + ∇R(θ). For any

s ∈ Rq , B(s)
def
= ∇(φ ◦ T)(s) is a symmetric q × q matrix and

there exist 0 < vmin ≤ vmax < ∞ such that for all s ∈ Rq ,
the spectrum of B(s) is in [vmin, vmax]. For any i ∈ [n]?,
s̄i ◦ T is globally Lipschitz on Rq with constant Li. The function
s 7→ ∇(F ◦ T)(s) = −B(s) (s̄ ◦ T (s)− s) is globally Lipschitz
on Rq with constant LẆ.

Lemma 1. Let ρ ∈ (0, 1) and {Dk, k ≥ 0} be real numbers such
that

∑
k≥0 ρ

k|Dk| < ∞. Let ξ ∼ G?(1 − ρ). Then E[Dξ−1] =

ρE[Dξ] + (1− ρ)D0 = E[Dξ] + (1− ρ)(D0 − E[Dξ]).

Part of this work is funded by the Fondation Simone and Cino Del Duca
under the program OpSiMorE

Proof. By definition of ξ,

E [Dξ] = (1− ρ)
∑
k≥1

ρk−1Dk

= ρ−1(1− ρ)
∑
k≥1

ρkDk

= ρ−1(1− ρ)
∑
k≥0

ρkDk − ρ−1(1− ρ)D0

= ρ−1(1− ρ)
∑
k≥1

ρk−1Dk−1 − ρ−1(1− ρ)D0

= ρ−1E [Dξ−1]− ρ−1(1− ρ)D0 .

This yields ρE [Dξ] = E [Dξ−1] − (1 − ρ)D0 and concludes the
proof.

Lemma 2. For any t ∈ [kout]
?, k ∈ [ξt]

?, Bt,k andFt,k−1 are inde-

pendent. In addition, for any s ∈ Rq , b−1E
[∑

i∈Bt,k
s̄i ◦ T(s)

]
=

s̄ ◦ T(s). Finally, assume that for any i ∈ [n]?, s̄i ◦ T is globally
Lipschitz on Rq with constant Li. Then for any s, s′ ∈ Rq ,

E

‖b−1
∑
i∈Bt,k

{
s̄i ◦ T(s)− s̄i ◦ T(s′)

}
− s̄ ◦ T(s) + s̄ ◦ T(s′)‖2


≤ 1

b

(
L2‖s− s′‖2 − ‖s̄ ◦ T(s)− s̄ ◦ T(s′)‖2

)
,

where L2 def
= n−1∑n

i=1 L
2
i .

Proof. See [1, Lemma 4]; the proof holds true when Bt,k is sampled
with or without replacement.

Proposition 3. For any t ∈ [kout]
?, k ∈ [ξt − 1],

E [St,k+1|Ft,k]− s̄ ◦ T(Ŝt,k) = St,k − s̄ ◦ T(Ŝt,k−1) ,

and
E
[
St,k+1 − s̄ ◦ T(Ŝt,k)|Ft,0

]
= Et .

Proof. Let t ∈ [kout]
?, k ∈ [ξt − 1]. By Lemma 2,

E [St,k+1|Ft,k] = St,k + s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1) .

By definition of St,0 and of the filtrations, St,0 − s̄ ◦ T(Ŝt,−1) =
Et ∈ Ft,0. The proof follows by induction on k.



Proposition 4. Assume that for any i ∈ [n]?, s̄i ◦ T is globally
Lipschitz on Rq with constant Li. For any t ∈ [kout]

?, k ∈ [ξt − 1],

E
[
‖St,k+1 − E [St,k+1|Ft,k] ‖2|Ft,k

]
≤ 1

b

(
L2‖Ŝt,k − Ŝt,k−1‖2 − ‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2

)
≤ L2

b
γ2
t,k‖St,k − Ŝt,k−1‖2 ,

where L2 def
= n−1∑n

i=1 L
2
i . By convention, γ1,0 = 0.

Proof. Let t ∈ [kout]
?, k ∈ [ξt − 1]. By Lemma 2, Proposition 3,

the definition of St,k+1 and of the filtration Ft,k,

St,k+1 − E [St,k+1|Ft,k]

= St,k+1 − s̄ ◦ T(Ŝt,k)− St,k + s̄ ◦ T(Ŝt,k−1)

= b−1
∑

i∈Bt,k+1

{s̄i ◦ T(Ŝt,k)− s̄i ◦ T(Ŝt,k−1)}

− s̄ ◦ T(Ŝt,k) + s̄ ◦ T(Ŝt,k−1) .

We then conclude by Lemma 2 for the first inequality; and by using
the definition of Ŝt,k for the second one:

Ŝt,k − Ŝt,k−1 = γt,k
(
St,k − Ŝt,k−1

)
except when t = 1 and k = 0, where Ŝ1,0 − Ŝ1,−1 = 0.

Proposition 5. Assume that for any i ∈ [n]?, s̄i ◦ T is globally
Lipschitz on Rq with constant Li. For any t ∈ [kout]

?, k ∈ [ξt − 1],

E
[
‖St,k+1 − s̄ ◦ T(Ŝt,k)‖2|Ft,k

]
≤ L2

b
γ2
t,k‖St,k − Ŝt,k−1‖2 + ‖St,k − s̄ ◦ T(Ŝt,k−1)‖2 ,

where L2 def
= n−1∑n

i=1 L
2
i . By convention, γ1,0 = 0.

Proof. By definition of the conditional expectation, we have for any
r.v. φ(V )

E
[
‖U − φ(V )‖2|V

]
= E

[
‖U − E [U |V ] ‖2|V

]
+‖E [U |V ]−φ(V )‖2 .

The proof follows from this equality and Propositions 3 and 4.

Corollary 6. Assume that for any i ∈ [n]?, s̄i ◦ T is globally Lip-
schitz with constant Li. For any t ∈ [kout]

?, let ρt ∈ (0, 1) and
Ξt ∼ G?(1− ρt). For any t ∈ [kout]

?,

Et
[
(γt,Ξt − ρtγt,Ξt+1) ‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
≤ L2ρt

b
Et
[
γt,Ξt+1γ

2
t,Ξt
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
+
L2(1− ρt)

b
γt,1γ

2
t,0‖St,0 − Ŝt,−1‖2 + (1− ρt)γt,1‖Et‖2 ,

where L2 def
= n−1∑n

i=1 L
2
i .

Proof. Let t ∈ [kout]
? and k ∈ [ξt − 1]. From Proposition 5 and

since Ft,0 ⊆ Ft,k for k ∈ [ξt − 1], we have

E
[
‖St,k+1 − s̄ ◦ T(Ŝt,k)‖2|Ft,0

]
≤ E

[
‖St,k − s̄ ◦ T(Ŝt,k−1)‖2 +

L2

b
γ2
t,k‖St,k − Ŝt,k−1‖2|Ft,0

]
.

Multiply by γt,k+1 and apply with k = ξt − 1:

E
[
γt,ξt‖St,ξt − s̄ ◦ T(Ŝt,ξt−1)‖2|Ft,0

]
≤ E

[
γt,ξt‖St,ξt−1 − s̄ ◦ T(Ŝt,ξt−2)‖2|Ft,0

]
+
L2

b
E
[
γt,ξtγ

2
t,ξt−1‖St,ξt−1 − Ŝt,ξt−2‖2|Ft,0

]
.

This implies

Et
[
γt,Ξt‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
≤ Et

[
γt,Ξt‖St,Ξt−1 − s̄ ◦ T(Ŝt,Ξt−2)‖2|Ft,0

]
+
L2

b
Et
[
γt,Ξtγ

2
t,Ξt−1‖St,Ξt−1 − Ŝt,Ξt−2‖2|Ft,0

]
.

By Lemma 1, we have

Et
[
γt,Ξt‖St,Ξt−1 − s̄ ◦ T(Ŝt,Ξt−2)‖2|Ft,0

]
= ρtEt

[
γt,Ξt+1‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
+ (1− ρt)γt,1‖St,0 − s̄ ◦ T(Ŝt,−1)‖2 ;

by definition of St,0 and Ft,0, the last term is equal to (1 −
ρt)γt,1‖Et‖2. By Lemma 1, we have

Et
[
γt,Ξtγ

2
t,Ξt−1‖St,Ξt−1 − Ŝt,Ξt−2‖2|Ft,0

]
= ρtEt

[
γt,Ξt+1γ

2
t,Ξt
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
+ (1− ρt)γt,1γ2

t,0‖St,0 − Ŝt,−1‖2 .

This concludes the proof.

Lemma 7. For any h, s, S ∈ Rq and any q × q symmetric matrix
B, it holds

−2 〈Bh, S〉 = −〈BS, S〉 − 〈Bh, h〉+ 〈B{h− S}, h− S〉 .

Proposition 8. Assume A1 to A3. For any t ∈ [kout]
? and k ∈

[ξt − 1],

E
[
W(Ŝt,k+1)|Ft,0

]
+
vmin

2
γt,k+1E

[
‖h(Ŝt,k)‖2|Ft,0

]
≤ E

[
W(Ŝt,k)|Ft,0

]
+
vmax

2
γt,k+1E

[
‖St,k+1 − s̄ ◦ T(Ŝt,k)‖2|Ft,0

]
− γt,k+1

2
(vmin − γt,k+1LẆ)E

[
‖St,k+1 − Ŝt,k‖2|Ft,0

]
.

Proof. Since W is continuously differentiable with LẆ-Lipschitz
gradient, then for any s, s′ ∈ Rq ,

W(s′)−W(s) ≤
〈
∇W(s), s′ − s

〉
+
LẆ

2
‖s′ − s‖2 .

Set s′ = s + γS where γ > 0 and S ∈ Rq . Since ∇W(s) =
−B(s)h(s) andB(s) is symmetric, apply Lemma 7 with h← h(s),
B ← B(s) and S = (s′ − s)/γ; this yields

W(s+ γS)−W(s) ≤ −γ
2
〈B(s)S, S〉 − γ

2
〈B(s)h(s), h(s)〉

+
γ

2
〈B(s){h(s)− S}, h(s)− S〉+

LẆ

2
γ2‖S‖2 .



Since ‖a‖2vmin ≤ 〈B(s)a, a〉 ≤ vmax‖a‖2 for any a ∈ Rq , we
have

W(s+ γS)−W(s) ≤ −γvmin

2
‖S‖2 − γvmin

2
‖h(s)‖2

+
γvmax

2
‖h(s)− S‖2 +

LẆ

2
γ2‖S‖2 .

Let t ∈ [kout]
? and k ∈ [ξt − 1]. Applying this inequality with

s← Ŝt,k, γ ← γt,k+1, S ← St,k+1− Ŝt,k (which yields s+γS =

Ŝt,k+1), and then the conditional expectation yield the result.

Proposition 9. Assume A1 to A3. For any t ∈ [kout]
?

W(Ŝt+1,0)−W(Ŝt+1,−1)

≤ −γt+1,0vmin

2
‖h(Ŝt+1,−1)‖2 +

vmaxγt+1,0

2
‖Et+1‖2

− γt+1,0

2
(vmin − γt+1,0LẆ) ‖St+1,0 − Ŝt+1,−1‖2 .

Proof. As in the proof of Proposition 8, we write for any s, s′ ∈ Rq ,

W(s′)−W(s) ≤
〈
∇W(s), s′ − s

〉
+
LẆ

2
‖s′ − s‖2 .

With Lemma 7, this yields when s′ = s+γS for γ > 0 and S ∈ Rq

W(s+ γS)−W(s) ≤ −γ
2

(vmin − γLẆ) ‖S‖2 − γvmin

2
‖h(s)‖2

+
vmaxγ

2
‖h(s)− S‖2 .

Apply this inequality with γ ← γt+1,0, s ← Ŝt+1,−1 and S ←
St+1,0 − Ŝt+1,−1. This yields s+ γS = Ŝt+1,0 and

h(s)− S = s̄ ◦ T(Ŝt+1,−1)− St+1,0 = −Et+1 .

Theorem 10. Assume A1 to A3. For any t ∈ [kout]
?, let ρt ∈ (0, 1)

and Ξt ∼ G?(1 − ρt). Finally, choose γt,k+1 = γt > 0 for any
k ≥ 0. For any t ∈ [kout]

?,

vminγt
2(1− ρt)

Et
[
‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≤W(Ŝt,0)− Et

[
W(Ŝt,Ξt)|Ft,0

]
+

vmax

2(1− ρt)
L2

b
γtγ

2
t,0‖St,0 − Ŝt,−1‖2 +

vmax

2(1− ρt)
γt‖Et‖2

− γt
2(1− ρt)

(
vmin − γtLẆ −

vmaxL
2ρt

(1− ρt)b
γ2
t

)
· · ·

× Et
[
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
.

By convention, γ1,0 = 0.

Proof. Apply Proposition 8 with k ← ξt − 1 and then set ξt ← Ξt;
this yields

Et
[
W(Ŝt,Ξt)|Ft,0

]
+
vmin

2
Et
[
γt,Ξt‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≤ Et

[
W(Ŝt,Ξt−1)|Ft,0

]
+
vmax

2
Et
[
γt,Ξt‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
− Et

[γt,Ξt

2
(vmin − γt,ΞtLẆ) ‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
.

Since Ξt ≥ 1 and γt,k = γt for any k ≥ 1, we have

Et
[
W(Ŝt,Ξt)|Ft,0

]
+
vmin

2
γtEt

[
‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≤ Et

[
W(Ŝt,Ξt−1)|Ft,0

]
+
vmax

2
γtEt

[
‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
− γt

2
(vmin − γtLẆ)Et

[
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
.

By Lemma 1, it holds

Et
[
W(Ŝt,Ξt)|Ft,0

]
= Et

[
W(Ŝt,Ξt−1)|Ft,0

]
+ (1− ρt)

(
Et
[
W(Ŝt,Ξt)|Ft,0

]
−W(Ŝt,0)

)
.

Furthermore, by Corollary 6 applied with γt,Ξt = γt,Ξt+1 = γt

(1− ρt) γtEt
[
‖St,Ξt − s̄ ◦ T(Ŝt,Ξt−1)‖2|Ft,0

]
≤ L2ρt

b
γ3
t Et

[
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
+
L2(1− ρt)

b
γtγ

2
t,0‖St,0 − Ŝt,−1‖2 + (1− ρt)γt‖Et‖2 ,

Therefore,

vmin

2
γtEt

[
‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≤ (1− ρt) W(Ŝt,0)− (1− ρt)Et

[
W(Ŝt,Ξt)|Ft,0

]
+
vmax

2

L2ρt
(1− ρt)b

γ3
t Et

[
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
+
vmax

2

L2

b
γtγ

2
t,0‖St,0 − Ŝt,−1‖2 +

vmax

2
γt‖Et‖2

− γt
2

(vmin − γtLẆ)Et
[
‖St,Ξt − Ŝt,Ξt−1‖2|Ft,0

]
.

This concludes the proof.

Corollary 11 (of Theorem 10). Assume that for any t ∈ [kout]
?,

1− ρt = 1/kin and γt = α/L where α > 0 satisfies

vmin − α
LẆ

L
− α2vmax

kin

b

(
1− 1

kin

)
> 0 .

For any t ∈ [kout]
?,(

α(kin − 1)

L
+ γt+1,0

)
vmin

2
Et
[
‖h(Ŝt,Ξt)‖

2|Ft,0
]

≤W(Ŝt,0)− E
[
W(Ŝt+1,0)|Ft,0

]
− γt+1,0

2
(vmin − γt+1,0LẆ)E

[
‖St+1,0 − Ŝt+1,−1‖2|Ft,0

]
+
vmaxkin

2

αL

b
γ2
t,0‖St,0 − Ŝt,−1‖2

+
vmaxαkin

2L
‖Et‖2 +

vmaxγt+1,0

2
E
[
‖Et+1‖2|Ft,0

]
.



Proof. Let t ∈ [kout]
?. By Proposition 9, since Ŝt,ξt = Ŝt+1,−1 we

have

− E
[
W(Ŝt,ξt)|Ft,0

]
≤ −E

[
W(Ŝt+1,0)|Ft,0

]
− γt+1,0vmin

2
E
[
‖h(Ŝt,ξt)‖

2|Ft,0
]

+
vmaxγt+1,0

2
E
[
‖Et+1‖2|Ft,0

]
− γt+1,0

2
(vmin − γt+1,0LẆ)E

[
‖St+1,0 − Ŝt+1,−1‖2|Ft,0

]
.

The previous inequality remains true when E
[
W(Ŝt,ξt)|Ft,0

]
is

replaced with Et
[
W(Ŝt,Ξt)|Ft,0

]
; and E

[
‖h(Ŝt,ξt)‖2|Ft,0

]
with

Et
[
‖h(Ŝt,Ξt)‖2|Ft,0

]
. The proof follows from Theorem 10, and

(see Lemma 1)

Et
[
‖h(Ŝt,Ξt−1)‖2|Ft,0

]
≥ ρtEt

[
‖h(Ŝt,Ξt)‖

2|Ft,0
]
.

We also use γt = α/L and ρt/(1− ρt) = kin − 1.



2. NUMERICAL ILLUSTRATION

By convention, vectors are column-vectors. For a matrix a, aT de-
notes its transpose.

2.1. The model

The observations (Y1, · · · , Yn) are assumed i.i.d. with distribution

g∑
`=1

α` Np(µ`,Σ)

where α` ≥ 0 and
∑g
`=1 α` = 1. The negative normalized log-

likelihood is given by (up to an additive constant)

θ 7→ F (θ)
def
= −1

2
log det(Σ−1)

− 1

n

n∑
i=1

log

g∑
`=1

α` exp

(
−1

2
(Yi − µ`)TΣ−1(Yi − µ`)

)
.

The parameter θ collects the weights, the expectations, and the co-
variance matrix

θ
def
= (α1, · · · , αg, µ1, · · · , µg,Σ)

so that θ ∈ Θ with

Θ
def
=

{
α` ≥ 0 for ` ∈ [g]? s.t.

g∑
`=1

α` = 1

}
× (Rp)g ×M+

p ;

M+
p denotes the set of the p× p positive definite matrices.
For all i ∈ [n]?, we write

− log

g∑
`=1

α` exp

(
−1

2
(Yi − µ`)TΣ−1(Yi − µ`)

)

= − log

g∑
`=1

exp

(
−1

2
(Yi − µ`)TΣ−1(Yi − µ`) + logα`

)

= − log

g∑
z=1

exp

(
−1

2

g∑
`=1

1z=`(Yi − µ`)TΣ−1(Yi − µ`)

+

g∑
`=1

1z=` logα`

)

=
1

2
Y Ti Σ−1Yi − log

g∑
z=1

exp

(
g∑
`=1

1z=`Y
T
i Σ−1µ`

)
· · ·

× exp

(
−1

2

g∑
`=1

1z=`
{
µT` Σ−1µ` − 2 logα`

})

Hence, F (θ) is of the form

− 1

n

n∑
i=1

log

∫
Z

hi(z) exp(〈si(z), φ(θ)〉)µ(dz) + R(θ)

by setting: µ the counting measure on [g]?, Z = [g]?, hi(z) = 1,

and

R(θ)
def
=

1

2
Trace

(
Σ−1 1

n

n∑
i=1

YiY
T
i

)
− 1

2
log det(Σ−1),

φ(θ)
def
=


logα1 − 0.5µT1 Σ−1µ1

· · ·
logαg − 0.5µTg Σ−1µg

Σ−1µ1

· · ·
Σ−1µg

 , si(z)
def
=


1z=1

· · ·
1z=g
1z=1Yi
· · ·

1z=gYi

 .

Note that φ(θ) ∈ Rg+pg and si(z) ∈ Rg+pg .
From these expressions, for any i ∈ [n]? and θ ∈ Θ, the distri-

bution z 7→ pi(z; θ) is the distribution on [g]? given by

pi(`; θ) =
α` exp

(
− 1

2
(Yi − µ`)TΣ−1(Yi − µ`)

)∑g
u=1 αu exp

(
− 1

2
(Yi − µu)TΣ−1(Yi − µu)

)
for any ` ∈ [g]?. Therefore

s̄i(θ) =


pi(1; θ)
· · ·

pi(g; θ)
pi(1; θ)Yi
· · ·

pi(g; θ)Yi

 .

For a vector s ∈ Rg+pg , we write

s =


s(1),1

· · ·
s(1),g

s(2),1

· · ·
s(2),g

 ,

where s(1),` ∈ R and s(2),` ∈ Rp; with these notations, T(s) =
(α1, · · · , αg, µ1, · · · , µg,Σ) is defined by

α`
def
=

s(1),`∑g
u=1 s

(1),u

µ`
def
=

s(2),`

s(1),`

Σ
def
=

1

n

n∑
i=1

YiY
T
i −

g∑
`=1

s(1),`µ`µ
T
` .

2.2. Additional plots

In the numerical applications, p = 20, g = 12 and n = 6× 104.
Figure 1 displays the number of conditional expectation evalua-

tions per epoch (top) or cumulated vs the number of epoch (bottom).
For quad-geom, the total number of conditional expectations (CE)
evaluations is

• b(min(n,max(n/100, 6t2)))c for the computation of St
• and the 2b multiplied by the mean number of ξt.

For full-geom, the total number of CE evaluations is

• n for the computation of St
• and the 2xb multiplied by the mean number of ξt.

For full-ctt,



• n for the computation of St

• and the 2xb multiplied by kin which is constant over the inner
loops.

For quad-ctt,

• b(min(n,max(n/100, 6t2)))c for the computation of St

• and the 2xb multiplied by the mean number of ξt.

0 50 100 150
0

5

10

15
10 4

half-ctt

full-ctt

quad-ctt

half-geom

full-geom

quad-geom

(a) Per epoch

0 50 100 150
0

2

4

6

8

10

12

14

16

18
10 6

half-ctt

full-ctt

quad-ctt

half-geom

full-geom

quad-geom

(b) cumulated

Fig. 1. Number of CE evaluations: per epochs (top) and cumulated
(bottom).

Figure 2 displays the mean value of the normalized log-
likelihood n−1∑n

i=1 Li ◦ T(Ŝt,Ξt) vs the number of epochs t;
this mean value is computed over 30 independent runs of the al-
gorithms. Figure 3 displays the same analysis as in Figure 2 for
two different strategies for the number of inner loops ξt (on the top,
ξt is constant and equal to kin; on the bottom, ξt is a geometric
distribution with expectation kin), and different strategies for the
initialization Et.

Figure 4 displays the quantiles 0.25, 0.5 and 0.75 of the distribu-
tion of ‖h(Ŝt,Ξt)‖2; the quantiles are estimated over 30 independent
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(a) vs epoch 1 to 120
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(b) the first epochs are discarded

Fig. 2. The mean value, computed over 30 independent runs of the
algorithms, of the normalized log-likelihood n−1∑n

i=1 Li. The plot
shows its value vs the number of epochs.

runs of the algorithm. Here the case ξt is constant is considered, with
different strategies for the initialization Et.

Figure 5 displays the same analysis as in Figure 4, except that ξt
is a geometric random variable with expectation kin.

Figure 6 display Figure 4 and Figure 5 on the same plots. The
quantiles of the distribution of ‖h(Ŝt)‖2 vs the number of epochs
when {Ŝt, t ≥ 0} is obtained by online-EM.
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(a) Case of SPIDER-EM (fixed number of inner loop ξt = kin)
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(b) Case of Geom-SPIDER-EM

Fig. 3. The mean value, computed over 30 independent runs of the
algorithms, of the normalized log-likelihood n−1∑n

i=1 Li. The plot
shows the mean value vs the number of epochs, starting from epoch
#2
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Fig. 4. Case SPIDER-EM. Quantiles of the distribution of
‖h(Ŝt,Ξt)‖2, estimated over 30 independent runs, vs the number of
epochs t.
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Fig. 5. Case Geom-SPIDER-EM. Quantiles of the distribution of
‖h(Ŝt,Ξt)‖2, estimated over 30 independent runs, vs the number of
epochs t
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Fig. 6. Comparison of Online-EM, SPIDER-EM and Geom-
SPIDER-EM. Quantiles of the distribution of ‖h(Ŝt,Ξt‖2, estimated
over 30 independent runs, vs the number of epochs t.
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